Studying Forest Species Classification Methods by Combining PolSAR and Vegetation Spectral Indices
Abstract
:1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Research Data
2.3. Polarized Synthetic Aperture Radar Observations
2.4. Spectral Index of Vegetation in Multispectral Images
3. Forest Species Classification Methods
3.1. The Hilbert–Huang Transform
3.1.1. Empirical Modal Decomposition
3.1.2. Hilbert Transform
3.2. Forest Species Classification Models
4. Experiments and Results
4.1. Forest Species Classification Results
4.2. Spatial Distribution of Forest Tree Species in the Study Area
5. Discussion
5.1. Ablation Study
5.2. The Validity of the Hilbert–Huang Transform
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National Scale Biomass Estimators for United States Tree Species. For. Sci. 2003, 49, 12–35. [Google Scholar] [CrossRef]
- Domke, G.M.; Woodall, C.W.; Smith, J.E.; Westfall, J.A.; McRoberts, R.E. Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates. For. Ecol. Manag. 2012, 270, 108–116. [Google Scholar] [CrossRef]
- Suganuma, H.; Abe, Y.; Taniguchi, M.; Taniguchi, H.; Utsugi, H.; Kojima, T.; Yamada, K. Stand biomass estimation method by canopy coverage for application to remote sensing in an and area of Western Australia. For. Ecol. Manag. 2006, 222, 75–87. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Leckie, D.G. Advances in remote sensing technologies for forest surveys and management. Can. J. For. Res. 1990, 20, 464–483. [Google Scholar] [CrossRef]
- Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 2001, 22, 2377–2400. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Wu, H.; Li, W. Urban tree species classification by combining satellite-based laser and multispectral images. J. Tongji Univ. Nat. Sci. Ed. 2024, 52, 970–981. [Google Scholar]
- Zhang, B.; Zhu, H.; Song, W.; Zhu, J.; Dai, J.; Zhang, J.; Li, C. A Multi-Baseline Forest Height Estimation Method Combining Analytic and Geometric Expression of the RVoG Model. Forests 2024, 15, 1496. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, B.; Song, W.; Xie, Q.; Chang, X.; Zhao, R. Forest Canopy Height Estimation by Integrating Structural Equation Modeling and Multiple Weighted Regression. Forests 2024, 15, 369. [Google Scholar] [CrossRef]
- Ghosh, A.; Fassnacht, F.E.; Joshi, P.K.; Koch, B. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49–63. [Google Scholar] [CrossRef]
- Vatandaslar, C.; Lee, T.; Bettinger, P.; Ucar, Z.; Stober, J.; Peduzzi, A. Mapping percent canopy cover using individual tree- and area-based procedures that are based on airborne LiDAR data: Case study from an oak-hickory-pine forest in the USA. Ecol. Indic. 2024, 167, 112710. [Google Scholar] [CrossRef]
- Ming, L.; Liu, J.; Quan, Y.; Li, M.; Wang, B.; Wei, G. Mapping tree species diversity in a typical natural secondary forest by combining multispectral and LiDAR data. Ecol. Indic. 2024, 159, 111711. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Xu, W.; Xu, S.; Chang, X.; Song, W.; Zhu, J. A Fourier–Legendre Polynomial Forest Height Inversion Model Based on a Single-Baseline Configuration. Forests 2024, 15, 49. [Google Scholar] [CrossRef]
- Kumar, S.; Sara, R.; Singh, J.; Agrawal, S.; Kushwaha, S.P. Spaceborne PolInSAR and ground-based TLS data modeling forcharacterization of forest structural and biophysical parameters. Remote Sens. Appl. Soc. Environ. 2018, 11, 241–253. [Google Scholar]
- Musthafa, M.; Kumar, P.; Alsulamy, S.; Khedher, K.; Avtar, R. Development of L-band fully polarimetric SAR algorithm for forest biomass retrieval using 7SD and random forest regression. Phys. Chem. Earth Parts A B C 2024, 136, 103688. [Google Scholar]
- Kovacs, J.M.; Lu, X.X.; Flores-Verdugo, F.; Zhang, C.; de Santiago, F.F.; Jiao, X. Applications of ALOS PALSAR for monitoring biophysical parameters of a degraded black mangrove (Avicennia germinans) forest. ISPRS J. Photogramm. Remote Sens. 2013, 82, 102–111. [Google Scholar] [CrossRef]
- Suzuki, R.; Kim, Y.; Ishii, R. Sensitivity of the backscatter intensity of ALOS/PALSAR to the above-ground biomass and other biophysical parameters of boreal forest in Alaska. Polar Sci. 2013, 7, 100–112. [Google Scholar] [CrossRef]
- Krishnan, V.; Asaithambi, M. Semi-empirical SAR vegetation index for crop discrimination based on biomass in semi-arid region: A case study in Perambalur district, India. Remote Sens. Appl. Soc. Environ. 2023, 32, 101064. [Google Scholar] [CrossRef]
- Shaik Salma, N.; Keerthana, B.M. Dodamani, Target decomposition using dual-polarization sentinel-1 SAR data: Study on crop growth analysis. Remote Sens. Appl. Soc. Environ. 2022, 28, 100854. [Google Scholar] [CrossRef]
- Avtar, R.; Malik, R.; Musthafa, M.; Rathore, V.S.; Kumar, P.; Singh, G. Forest plantation species classification using Full-Pol-Time-Averaged SAR scattering powers. Remote Sens. Appl. Soc. Environ. 2023, 29, 100924. [Google Scholar] [CrossRef]
- CSchulz, C.; Förster, M.; Vulova, S.V.; Rocha, A.D.; Kleinschmit, B. Spectral-temporal traits in Sentinel-1 C-band SAR and Sentinel-2 multispectral remote sensing time series for 61 tree species in Central Europe. Remote Sens. Environ. 2024, 307, 114162. [Google Scholar] [CrossRef]
- Koyama, C.N.; Watanabe, M.; Hayashi, M.; Ogawa, T.; Shimada, M. Mapping the spatial-temporal variability of tropical forests by ALOS-2 L-band SAR big data analysis. Remote Sens. Environ. 2019, 233, 111372. [Google Scholar] [CrossRef]
- Lankoande, O.; Hayat, M.M.; Santhanam, B. Speckle Reduction of SAR Images Based on a Combined Markov Random Field and Statistical Optics Approach (Version1); The University of New Mexio: Albuquerque, NM, USA, 2022. [Google Scholar]
- Rudi, J.; Pabel, R.; Jager, G.; Koch, R.; Kunoth, A.; Bogena, H. Multiscale analysis of hydrologic time series data using the Hilbert–Huang transform. Vadose Zone J. 2010, 9, 925–942. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, X.; He, L.; Wang, W.; Moran, W. Spatial-temporal analysis of environmental data of north Beijing district using Hilbert-Huang transform. PLoS ONE 2016, 11, e0167662. [Google Scholar] [CrossRef]
- Wang, Q.; Geng, P.; Chen, J.; He, C. Dynamic discrimination method of seismic damage in tunnel portal based on improved wavelet packet transform coupled with Hilbert-Huang transform. Mech. Syst. Signal Process. 2023, 188, 110023. [Google Scholar] [CrossRef]
- Skeberis, C.; Zaharis, Z.D.; Xenos, T.D.; Spatalas, S.; Arabelos, D.N.; Contadakis, M.E. Time–frequency analysis of VLF for seismic-ionospheric precursor detection: Evaluation of Zhao-Atlas-Marks and Hilbert-Huang Transforms. Phys. Chem. Earth Parts A B C 2015, 85, 174–184. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, W.; Gao, J.; He, Y. Application of Hilbert–Huang transform based instantaneous frequency to seismic reflection data. J. Appl. Geophys. 2012, 82, 68–74. [Google Scholar] [CrossRef]
- Al-Greer, M.; Bashir, I.; Demirel, A.; Keysan, O. Autonomous fault detection and diagnosis for permanent magnet synchronous motors using combined variational mode decomposition, the Hilbert-Huang transform, and a convolutional neural network. Comput. Electr. Eng. 2023, 110, 108894. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhu, F.; Li, Y.; Duan, C.; Yang, J.; Dong, L.; Zhao, Y. Characteristics of non–linear dynamics and energy transfer in a vibration gas–solid fluidized bed by using Hilbert–Huang transform. Powder Technol. 2019, 344, 970–980. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Katlamudi, M.; Barman, C.; Lakshmi, G.U. Identification of earthquake precursors in soil radon-222 data of Kutch, Gujarat, India using empirical mode decomposition based Hilbert Huang Transform. J. Environ. Radioact. 2020, 222, 106353. [Google Scholar] [CrossRef]
- Zhang, R.R.; King, R.; Olson, L.; Xu, Y.L. Dynamic response of the Trinity River Relief Bridge to controlled pile damage: Modeling and experimental data analysis comparing Fourier and Hilbert–Huang techniques. J. Sound Vib. 2005, 285, 1049–1070. [Google Scholar] [CrossRef]
- Rouillard, V.; Lamb, M.J. Road vehicle shock detection algorithm using the Hilbert envelope. Comput. Methods Appl. Mech. Eng. 2024, 419, 116637. [Google Scholar] [CrossRef]
- Kunwar, A.; Jha, R.; Whelan, M.; Janoyan, K. Damage detection in an experimental bridge model using Hilbert–Huang transform of transient vibrations. Struct. Control. Health Monit. 2013, 20, 1–15. [Google Scholar] [CrossRef]
- Wang, F.; Yang, F.; Wang, Z. A Study on the Evolution of Forest Landscape Patterns in the Fuxin Region of China Combining SC-UNet and Spatial Pattern Perspectives. Sustainability 2024, 16, 7067. [Google Scholar] [CrossRef]
- Lee, J.S.; Potier, E. Polarimetric Radar Imaging: Basics to Applications, Second Edition; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Pu, R. Mapping tree species using advanced remote sensing technologies: A state-of-the-art review and perspective. J. Remote Sens. 2021, 2021, 9812624. [Google Scholar] [CrossRef]
- Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant Physiol. 1999, 154, 30. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, B.H.; Li, Z.L. Retrieval of leaf water content from remotely sensed data using a vegetation index model constructed with shortwave infrared reflectances. Int. J. Remote Sens. 2019, 40, 2313–2323. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295. [Google Scholar] [CrossRef]
- Shi, C.X.; Luo, Q.F. Hilbert-Huang transform and wavelet analysis of time history signal. Acta Seismol. Sin. 2003, 16, 422–429. [Google Scholar]
- He, L. Research on the Application of Hilbert-Yellow Transform in Power Harmonic Analysis. Ph.D. Thesis, Central South University, Changsha, China, 2009; pp. 6–7. [Google Scholar]
- Yan, R.; Gao, R.X. Hilbert–Huang transform-based vibration signal analysis for machine health monitoring. IEEE Trans. Instrum. Meas. 2006, 55.6, 2320–2329. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Charbuty, B.; Abdulazeez, A. Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends 2021, 2, 20–28. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, G.; Li, P.; Wang, H.; Zhang, M.; Liang, X. An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Syst. Appl. 2024, 237, 121549. [Google Scholar] [CrossRef]
- Adugna, T.; Xu, W.; Fan, J. Comparison of random forest and support vector machine classifiers for regional land cover mapping using coarse resolution FY-3C images. Remote Sens. 2022, 14, 574. [Google Scholar] [CrossRef]
- Yeom, S.; Giacomelli, I.; Fredrikson, M.; Jha, S. Privacy risk in machine learning: Analyzing the connection to overfitting. In Proceedings of the 2018 IEEE 31st Computer Security Foundations Symposium (CSF), Oxford, UK, 9–12 July 2018; pp. 268–282. [Google Scholar]
- Chabalala, Y.; Adam, E.; Ali, K.A. Exploring the effect of balanced and imbalanced multi-class distribution data and sampling techniques on fruit-tree crop classification using different machine learning classifiers. Geomatics 2023, 3, 70–92. [Google Scholar] [CrossRef]
- Bao, F.; Wu, S.; Gao, J.; Yuan, S.; Liu, Y.; Huang, K. Continental aerosol properties and absorption retrieval using random forest machine learning method specific to geostationary remote sensing. Remote Sens. Environ. 2024, 311, 114275. [Google Scholar] [CrossRef]
- Hou, W.; Chen, J.; He, M.; Ren, S.; Fang, L.; Wang, C.; Jiang, P.; Wang, W. Evolutionary trends and analysis of the driving factors of Ulva prolifera green tides: A study based on the random forest algorithm and multisource remote sensing images. Mar. Environ. Res. 2024, 198, 106495. [Google Scholar] [CrossRef]
- Aghabalaei, A.; Ebadi, H.; Maghsoudi, Y. Forest height estimation based on the RVoG inversion model and the PolInSAR decomposition technique. Int. J. Remote Sens. 2020, 41, 2684–2703. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Gong, W.; Yang, C.; Guo, Z.; Wang, D.; Wang, J.; Yang, H.; Xue, G.; Yang, S. Evaluating gross primary productivity over 9 China Flux sites based on random forest regression models, remote sensing, and eddy covariance data. Sci. Total Environ. 2023, 875, 162601. [Google Scholar] [CrossRef]
- Soleimani, H.; Kannan, G. A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Appl. Math. Model. 2015, 39, 3990–4012. [Google Scholar] [CrossRef]
- Fadhillah, M.F.; Lee, S.; Lee, C.-W.; Park, Y.-C. Application of Support Vector Regression and Metaheuristic Optimization Algorithms for Groundwater Potential Mapping in Gangneung-si, South Korea. Remote Sens. 2021, 13, 1196. [Google Scholar] [CrossRef]
- Hosseini, M.; Naeini, S.; Dehghani, A.; Khaledian, Y. Estimation of soil mechanical resistance parameter by using particle swarm optimization, genetic algorithm and multiple regression methods. Soil Tillage Res. 2016, 157, 32–42. [Google Scholar] [CrossRef]
- Fu, C.; Gan, S.; Yuan, X.; Xiong, H.; Tian, A. Determination of Soil Salt Content Using a Probability Neural Network Model Based on Particle Swarm Optimization in Areas Affected and Non-Affected by Human Activities. Remote Sens. 2018, 10, 1387. [Google Scholar] [CrossRef]
- Shahana, K.; Ghosh, S.; Jeganathan, C. A survey of particle swarm optimization and random forest based land cover classification. In Proceedings of the 2016 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 29–30 April 2016; pp. 241–245. [Google Scholar]
- Wei, Q.; Nurmemet, I.; Gao, M.; Xie, B. Inversion of Soil Salinity Using Multisource Remote Sensing Data and Particle Swarm Machine Learning Models in Keriya Oasis, Northwestern China. Remote Sens. 2022, 14, 512. [Google Scholar] [CrossRef]
- Mwakipunda, G.C.; Komba, N.A.; Kouassi, A.K.F.; Ayimadu, E.T.; Mgimba, M.M.; Ngata, M.R.; Yu, L. Prediction of hydrogen solubility in aqueous solution using modified mixed effects random forest based on particle swarm optimization for underground hydrogen storage. Int. J. Hydrogen Energy 2024, 87, 373–388. [Google Scholar] [CrossRef]
- Luo, W.; Yuan, D.; Jin, D.; Lu, P.; Chen, J. Optimal Control of Slurry Pressure during Shield Tunnelling Based on Random Forest and Particle Swarm Optimization. CMES—Comput. Model. Eng. Sci. 2021, 128, 109–127. [Google Scholar] [CrossRef]
- Altmann, Y.; Tobin, R.; Maccarone, A.; Ren, X.; McCarthy, A.; Buller, G.; McLaughlin, S. Bayesian restoration of reflectivity and range profiles from subsampled single-photon multispectral Lidar data. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017. [Google Scholar] [CrossRef]
- Pottier, E.; Cloude, S.R. Application of the H/A/alpha polarimetric decomposition theorem for land classification. Proc. SPIE—Int. Soc. Opt. Eng. 1997, 3120, 132–143. [Google Scholar] [CrossRef]
- Hu, B.; Li, Q.; Hall, G.B. A decision-level fusion approach to tree species classification from multi-source remotely sensed data. ISPRS Open J. Photogramm. Remote Sens. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Yan, E.; Wang, G.; Lin, H.; Xia, C.; Sun, H. Phenology-based classification of vegetation cover types in Northeast China using MODIS NDVI and EVI time series. Int. J. Remote Sens. 2015, 36, 489–512. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Q.; Guo, Y.; Li, Y.; Wang, B.; Chen, E.; Li, Z.; Hao, S. Mapping Coniferous Forest Distribution in a Semi-Arid Area Based on Multi-Classifier Fusion and Google Earth Engine Combining Gaofen-1 and Sentinel-1 Data: A Case Study in Northwestern Liaoning, China. Forests 2024, 15, 288. [Google Scholar] [CrossRef]
Vegetation Spectral Characteristics | Descriptive |
---|---|
Normalized Vegetation Index (NDVI) | |
Normalized Humidity Index (NHI) | |
Optimized Soil-Adjusted Vegetation Index (OSAVI) | |
Chlorophyll Index (CGI) | |
Green Index (GI) | |
Moisture Stress Index (MSI) | |
Red Edge Normalized Vegetation Index (reNDVI) | |
Enhanced Vegetation Index (EVI) | |
Ratio Vegetation Index (RVI) | |
Chlorophyll Content Index (LCCI) | |
Normalized Difference Red Edge Index (NDRESWIR) | |
Spectral Band | B1–B12 |
Forecast Category | Reference Category | User Accuracy | |||||
---|---|---|---|---|---|---|---|
Aspen | Maple | Mongolian Pine | Peach Tree | Chinese Pine | Apricot Tree | ||
Aspen | 42 | 0 | 1 | 0 | 0 | 0 | 0.976 |
Maple | 1 | 27 | 1 | 0 | 0 | 1 | 0.900 |
Mongolian pine | 0 | 0 | 34 | 3 | 0 | 0 | 0.918 |
Peach tree | 0 | 0 | 0 | 15 | 0 | 0 | 1.000 |
Chinese pine | 0 | 0 | 0 | 0 | 22 | 0 | 1.000 |
Apricot tree | 0 | 1 | 0 | 0 | 0 | 17 | 0.944 |
Producer accuracy | 0.976 | 0.964 | 0.944 | 0.833 | 1.000 | 0.944 | |
Kappa | 0.94 | ||||||
Overall classification accuracy | 0.951 |
Experimental Data | Average User Accuracy | Average Producer Accuracy | Kappa Coefficient (i.e., Height of Force) |
---|---|---|---|
Original PolSAR | 0.564 | 0.554 | 0.488 |
IMF1 | 0.504 | 0.567 | 0.459 |
IMF2 | 0.792 | 0.879 | 0.779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Song, W.; Zhang, B.; Lu, E.; Dai, J.; Zhao, W.; Hu, Z. Studying Forest Species Classification Methods by Combining PolSAR and Vegetation Spectral Indices. Forests 2025, 16, 15. https://doi.org/10.3390/f16010015
Zhu H, Song W, Zhang B, Lu E, Dai J, Zhao W, Hu Z. Studying Forest Species Classification Methods by Combining PolSAR and Vegetation Spectral Indices. Forests. 2025; 16(1):15. https://doi.org/10.3390/f16010015
Chicago/Turabian StyleZhu, Hongbo, Weidong Song, Bing Zhang, Ergaojie Lu, Jiguang Dai, Wei Zhao, and Zhongchao Hu. 2025. "Studying Forest Species Classification Methods by Combining PolSAR and Vegetation Spectral Indices" Forests 16, no. 1: 15. https://doi.org/10.3390/f16010015
APA StyleZhu, H., Song, W., Zhang, B., Lu, E., Dai, J., Zhao, W., & Hu, Z. (2025). Studying Forest Species Classification Methods by Combining PolSAR and Vegetation Spectral Indices. Forests, 16(1), 15. https://doi.org/10.3390/f16010015