Experimental Determination of the Flow Coefficient for a Constrictor Nozzle with a Critical Outflow of Gas
Abstract
:1. Introduction
2. Materials and Methods
- reciprocating compressor 1 REMEZA CБ4/C-100.LB30 (pressure 1.05 MPa; receiver 2 of 0.1 m3 capacity; pressure gauge 3 of accuracy class 1 with an error of 0.016 MPa);
- ball valves 4, 8 with a nominal bore of 6 mm matching the diameter of the supply tube to the nozzle;
- reducer 5 with a nominal bore of 6 mm, equipped with a manometer of accuracy class 1 with an error of 0.01 MPa;
- electronic pressure transmitter 6 with an accuracy of ±1% FS, transmitting data to a personal computer with a frequency of 1 s;
- removable constrictor nozzles with a threaded connection 9.
- Nozzle 9 under test is to be fixed to the compressed air line 6 using a threaded connection;
- The ball valve on the compressed air line 4 is closed. Compressor 1 supplies air into the receiver up to an excess pressure of 1 MPa (maximum compressor pressure possible), which is checked visually using a pressure gauge 3;
- The pressure reducer 5 is adjusted to the required pressure (valve 4 is open and valve 8 is closed);
- Valve 8 is switched to an “open” position, and air flows through the constrictor nozzle 9 into the atmosphere. The pressure drop in the receiver is checked visually using a pressure gauge 3. The pressure transmitter 6 transmits the readings of the reduced flow to the computer 11;
- The operation is repeated with nozzles of variable diameters and pressure reducer adjusted to pressures ensuring the critical drop at discharge to atmosphere.
- here is practically no heat exchange between the gas in the receiver and the ambient environment; therefore, the process of the receiver emptying may be regarded as adiabatic;
- as a result of intensive heat exchange with the environment, the gas inside the receiver maintains its initial temperature (ambient temperature) at any moment of emptying, i.e., the emptying process is isothermal.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Litvinenko, V. The Role of Hydrocarbons in the Global Energy Agenda: The Focus on Liquefied Natural Gas. Resources 2020, 9, 59. [Google Scholar] [CrossRef]
- Tcvetkov, P. Small-Scale LNG Projects: Theoretical Framework for Interaction between Stakeholders. Energy Rep. 2021, 8, 928–933. [Google Scholar] [CrossRef]
- Litvinenko, V.; Kozlov, A.; Stepanov, V. Hydrocarbon Potential of the Ural–African Transcontinental Oil and Gas Belt. J. Pet. Explor. Prod. Technol. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Litvinenko, V.; Vasiliev, N.I.; Lipenkov, V.; Dmitriev, A.N.; Podoliak, A.V. Special Aspects of Ice Drilling and Results of 5G Hole Drilling at Vostok Station, Antarctica. Ann. Glaciol. 2014, 55, 173–178. [Google Scholar] [CrossRef]
- Leonard, M.; Pisani-Ferry, J.; Shapiro, J.; Tagliapietra, S.; Wolf, G. The Geopolitics of the European Green Deal. Int. Organ. Res. J. 2021, 16, 204–235. [Google Scholar] [CrossRef]
- Morenov, V.; Leusheva, E.; Lavrik, A.; Lavrik, A.; Buslaev, G. Gas-Fueled Binary Energy System with Low-Boiling Working Fluid for Enhanced Power Generation. Energies 2022, 15, 2551. [Google Scholar] [CrossRef]
- Bolobov, V.; Martynenko, Y.V.; Voronov, V.; Latipov, I.; Popov, G. Improvement of the Liquefied Natural Gas Vapor Utilization System Using a Gas Ejector. Inventions 2022, 7, 14. [Google Scholar] [CrossRef]
- Kwak, D.-H.; Heo, J.-H.; Park, S.-H.; Seo, S.-J.; Kim, J.-K. Energy-Efficient Design and Optimization of Boil-off Gas (BOG) Re-Liquefaction Process for Liquefied Natural Gas (LNG)-Fuelled Ship. Energy 2018, 148, 915–929. [Google Scholar] [CrossRef]
- Martynenko, Y.V.; Voronov, V.A. A Technological Solutions Set to Ensure the Safety of Storage of Liquefied Natural Gas. In Proceedings of the Youth Technical Sessions Proceedings—Proceedings of the 6th Youth Forum of the World Petroleum Council- Future Leaders Forum, St. Petersburg, Russia, 23–28 June 2019; pp. 107–113. [Google Scholar]
- Drozdov, A.N.; Gorelkina, E.I. Development of a Pump-Ejector System for SWAG Injection into Reservoir Using Associated Petroleum Gas from the Annulus Space of Production Wells. J. Min. Inst. 2022, 254, 191–201. [Google Scholar] [CrossRef]
- Drozdov, A.N.; Gorbyleva, Y.A. Improving the Operation of Pump-Ejector Systems at Varying Flow Rates of Associated Petroleum Gas. J. Min. Inst. 2019, 238, 415. [Google Scholar] [CrossRef]
- Rao, H.N.; Wong, K.H.; Karimi, I.A. Minimizing Power Consumption Related to BOG Reliquefaction in an LNG Regasification Terminal. Ind. Eng. Chem. Res. 2016, 55, 7431–7445. [Google Scholar] [CrossRef]
- Lyubin, E.A. Evaluation of a Technology for Capturing Petroleum Vapors from Rvs-Type Storage Tanks with the Use of a Pump-Ejector Plant. Chem. Pet. Eng. 2014, 50, 288–293. [Google Scholar] [CrossRef]
- Vasil’ev, K.A. Vakuum-Privody Lentochnyh Konvejerov s Soplovym Otsosom Vozduha [Vacuum Drives for Belt Conveyors with Nozzle Air Suction]. J. Min. Inst. 1995, 141, 21. [Google Scholar]
- Erokhin, A.P. Raschet Optimal’nyh Parametrov Ezhektora [Calculation of the Optimal Parameters of the Ejector]. J. Min. Inst. 1973, 65, 32. [Google Scholar]
- Smirnov, Y.D.; Kovshov, S.V.; Ivanov, A.V. Working out Innovative Dust Control Devices for Conditions of Northern Regions. J. Min. Inst. 2012, 195, 133. [Google Scholar]
- Kumar, V.; Sachdeva, G. 1-D Model for Finding Geometry of a Single Phase Ejector. Energy 2018, 165, 75–92. [Google Scholar] [CrossRef]
- Qin, J.; Zheng, P.; Chen, X. Numerical Simulation of Ejection Performance of Gas-Liquid Ejector under Different Inlet and Outlet Conditions. Guocheng Gongcheng Xuebao/Chin. J. Process Eng. 2017, 17, 469–476. [Google Scholar]
- Pichler, M.; Wesenauer, F.; Jordan, C.; Puskas, S.; Streibl, B.; Winter, F.; Harasek, M. Design and Simulation of Gas Burner Ejectors. Carbon Resour. Convers. 2021, 4, 28–35. [Google Scholar] [CrossRef]
- Hebbar, S.; Sridhara, K.; Paranjpe, P.A. Performance of Conical Jet Nozzles in Terms of Discharge Coefficient; NASA: Washington, DC, USA, 1970. [Google Scholar]
- Deutsch, M.E. Tekhnicheskaya Gazodinamika. Izd. 2-e, Pererabot [Technical Gas Dynamics. Ed. 2nd, Revised]; Leningrad: Moscow, Russia, 1961. [Google Scholar]
- Charalampous, G.; Hardalupas, Y. How Do Liquid Fuel Physical Properties Affect Liquid Jet Development in Atomisers? Phys. Fluids 2016, 28, 102106. [Google Scholar] [CrossRef]
- Abramovich, G.N. Prikladnaya Gazovaya Dinamika [Applied Gas Dynamics]; Main Edition of Physical and Mathematical Literature; Kraiko, A., Ed.; Nauka: Moscow, Russia, 1991; ISBN 5-02-014015-5. [Google Scholar]
- Uspensky, V.A.; Kuznetsov, Y.M. Strujnye Vakuumnye Nasosy [Jet Vacuum Pumps}; Mechanical Engineering: Moscow, Russia, 1973. [Google Scholar]
- Donets, K.G. Gidroprivodnye Strujnye Kompressornye Ustanovki [Hydraulically Driven Jet Compressor Units]; Nauka: Moscow, Russia, 1990; ISBN 5-247-00928-2. [Google Scholar]
- Tarasov, V.V. Raschet Vremeni Istecheniya Ideal’nogo Gaza Iz Rezervuara Postoyannogo Ob”ema v Sredu s Postoyannym Davleniem Pri Adiabaticheskom Processe [Calculation of the Flow Time of an Ideal Gas from a Reservoir of Constant Volume into a Medium with Constant Pressu. Bull. Tyumen State Univ. 2016, 2, 84–95. [Google Scholar]
- Kurbatov, Y.S. Gazodinamika Protsessa Istecheniya Iz Rezervuarov so Szhatymi Gazami [Gasdynamics of the Outflow Process in the Tanks with Compressed Gases]. Molod. Uchenyy 2014, 8(67), 49–51. [Google Scholar]
- Nakao, S.; Hirayama, T.; Takamoto, M. Relations between the Discharge Coefficients of the Sonic Venturi Nozzle and a Kind of Gases. Trans. JAPAN Soc. Mech. Eng. Ser. B 2000, 66, 438–444. [Google Scholar] [CrossRef]
- Tang, S.P.; Fenn, J.B. Experimental Determination of the Discharge Coefficients for Critical Flow through an Axisymmetric Nozzle. AIAA J. 1978, 16, 41–46. [Google Scholar] [CrossRef]
- Didmanidze, O.; Afanasiev, A.S.; Khakimov, R.T. Matematicheskaya Model’ Fazovogo Perekhoda Szhizhennogo Metana v Kriogennom Bake Transportnogo Sredstva [Mathematical Model of the Phase Transition of Liquefied Methane in the Cryogenic Tank of a Vehicle]. J. Min. Instr. 2020, 243, 337. [Google Scholar] [CrossRef]
- Council, I. GOST 2294-2005. Klapany Predohranitel’nye Pryamogo Dejstviya. Obshchie Tekhnicheskie Usloviya [GOST 2294-2005. Safety Valves of Direct Action. General Specifications]; F.O.R. Standardization: Moscow, Russia, 2008. [Google Scholar]
- Zezin, V.G. Gidrogazodinamika [Fluid Dynamics]; SUSU: Chelyabinsk, Russia, 2010. [Google Scholar]
- Vilner, Y.M.; Kovalev, Y.T.; Nekrasov, B.B. Spravochnoe Posobie Po Gidravlike, Gidromashinam i Gidroprivodam [Reference Manual for Hydraulics, Hydraulic Machines and Hydraulic Drives]; Superior school: Минск, Russia, 1976. [Google Scholar]
- Mansour, A.; Chigier, N. The Effect of Turbulence on the Stability of Liquid Jets and the Resulting Droplet Size Distributions. Third Quarterly Technical Report, July 1, 1993–September 30, 1993; Carnegie-Mellon University, Pittsburgh, PA (United States): Morgantown, WV, USA, 1993; Volume 4. [Google Scholar]
- Sabirzyanov, A.; Kirillova, A. Complex Effect of Recess Depth in Nozzle Design on the Discharge Coefficient. J. Almaz Antey Air Space Def. Corp. 2018, 1, 43–50. [Google Scholar] [CrossRef]
- Leung, J.C. A Theory on the Discharge Coefficient for Safety Relief Valve. J. Loss Prev. Process Ind. 2004, 17, 301–313. [Google Scholar] [CrossRef]
- Rio-Cano, C.; Tousi, N.M.; Bergada, J.M.; Comas, A. Discharge Coefficients of a Heavy Suspension Nozzle. Appl. Sci. 2021, 11, 2619. [Google Scholar] [CrossRef]
- Miller, F.P.; Vandome, A.F.; McBrewster, J. Adiabatic Process; Alphascript Publishing: Dortmund, Germany, 2010; ISBN 9786130292737. [Google Scholar]
- Reader-Harris, M. Nozzle Discharge Coefficient. In Orifice Plates and Venturi Tubes; Springer International Publishing: Cham, Switzerland, 2015; pp. 281–304. ISBN 978-3-319-16880-7. [Google Scholar]
- Sergel, O.S. Prikladnaya Gidrogazodinamika [Applied Fluid Dynamics]; Mashinostr: Moscow, Russia, 1981. [Google Scholar]
- Ghassemieh, E.; Versteeg, H.K.; Acar, M. The Effect of Nozzle Geometry on the Flow Characteristics of Small Water Jets. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2006, 220, 1739–1753. [Google Scholar] [CrossRef]
- Nakao, S.; Asano, H.; Yakuwa, T. Behaviors of Discharge Coefficients of Small Diameter Critical Nozzles. Flow Meas. Instrum. 2021, 80, 101994. [Google Scholar] [CrossRef]
pinlet, MPa | d, m | fef, m2 | μ |
---|---|---|---|
6 | 0.05 | 0.12 × 10−2 | 0.61 |
6 | 0.2 | 0.016 | 0.51 |
16 | 0.05 | 0.46 × 10−3 | 0.23 |
16 | 0.2 | 0.64 × 10−2 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolobov, V.; Martynenko, Y.; Yurtaev, S. Experimental Determination of the Flow Coefficient for a Constrictor Nozzle with a Critical Outflow of Gas. Fluids 2023, 8, 169. https://doi.org/10.3390/fluids8060169
Bolobov V, Martynenko Y, Yurtaev S. Experimental Determination of the Flow Coefficient for a Constrictor Nozzle with a Critical Outflow of Gas. Fluids. 2023; 8(6):169. https://doi.org/10.3390/fluids8060169
Chicago/Turabian StyleBolobov, Victor, Yana Martynenko, and Sergey Yurtaev. 2023. "Experimental Determination of the Flow Coefficient for a Constrictor Nozzle with a Critical Outflow of Gas" Fluids 8, no. 6: 169. https://doi.org/10.3390/fluids8060169