Fungistatic and Fungicidal Capacity of a Biosurfactant Extract Obtained from Corn Steep Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Biosurfactants from Corn Steep Water
2.2. Surface Activity and Critical Micellar Concentration Determination–Wilhelmy Plate Assay
2.3. Elemental Analysis of the Extracellular Biosurfactant Obtained from the Corn Steep Water
2.4. Strains and Standard Culture Conditions for the Antimicrobial Assay
2.5. Antimicrobial Assay
2.6. Experimental Design
2.7. Statistical Analysis
3. Results and Discussion
3.1. Biosurfactant Characterization
3.2. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Batt, C.A. Microbial Food Spoilage. Ref. Module Food Sci. 2016. [Google Scholar] [CrossRef]
- Bellú, L.G. Food Losses and Waste: Issues and Policy Options; FAO: Rome, Italy, 2017; pp. 1–20. [Google Scholar]
- Palencia, E.R.; Hinton, D.M.; Bacon, C.W. The Black Aspergillus Species of Maize and Peanuts and Their Potential for Mycotoxin Production. Toxins 2010, 2, 399–416. [Google Scholar] [CrossRef]
- Hernández, A.; Nevado, F.P.; Ruiz-Moyano, S.; Serradilla, M.; Villalobos, M.; Martín, A.; Córdoba, M. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int. J. Food Microbiol. 2018, 286, 98–110. [Google Scholar] [CrossRef]
- Paulussen, C.; Hallsworth, J.E.; Álvarez-Pérez, S.; Nierman, W.C.; Hamill, P.G.; Blain, D.; Rediers, H.; Lievens, B. Ecology of aspergillosis: Insights into the pathogenic potency ofAspergillus fumigatusand some otherAspergillusspecies. Microb. Biotechnol. 2016, 10, 296–322. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [Green Version]
- Salvatori, O.; Puri, S.; Tati, S.; Edgerton, M. Innate Immunity and Saliva in Candida albicans-mediated Oral Diseases. J. Dent. Res. 2016, 95, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Lyon, J.P.; Dos Santos, F.V.; De Moraes, P.C.G.; Moreira, L.M. Inhibition of Virulence Factors of Candida spp. by Different Surfactants. Mycopathologia 2010, 171, 93–101. [Google Scholar] [CrossRef]
- Commission Regulation (EU). No 1107/2009 Ad-hoc study to support the initial establishment of the list of candidates for substitution as required in Article 80(7) of Regulation (EC) No 1107/2009 Final Report. Off. J. Eur. Union 2013, 1–115. [Google Scholar]
- Valdés, A.; Mellinas, A.C.; Ramos, M.; Garrigós, M.C.; Jiménez, A. Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front. Chem. 2014, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Dos Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A. Ionic Behavior Assessment of Surface-Active Compounds from Corn Steep Liquor by Exchange Resins. J. Surfactants Deterg. 2016, 20, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Ron, E.Z.; Rosenberg, E. Natural roles of biosurfactants. Environ. Microbiol. 2001, 3, 229–236. [Google Scholar] [CrossRef] [PubMed]
- López-Prieto, A.; Rodríguez-López, L.; Rincón-Fontán, M.; Moldes, A.B.; Cruz, J.M. Effect of biosurfactant extract obtained from the corn-milling industry on probiotic bacteria in drinkable yogurt. J. Sci. Food Agric. 2018, 99, 824–830. [Google Scholar] [CrossRef]
- Rincón-Fontán, M.; Rodríguez-López, L.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Influence of micelle formation on the adsorption capacity of a biosurfactant extracted from corn on dyed hair. RSC Adv. 2017, 7, 16444–16452. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-López, L.; Vecino, X.; Barbosa-Pereira, L.; Moldes, A.B.; Cruz, J.M. A multifunctional extract from corn steep liquor: Antioxidant and surfactant activities. Food Funct. 2016, 7, 3724–3732. [Google Scholar] [CrossRef]
- Vecino, X.; Rodríguez-López, L.; Gudiña, E.; Cruz, J.; Moldes, A.; Rodrigues, L.R. Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. J. Ind. Eng. Chem. 2017, 55, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Gudiña, E.J.; Rocha, V.; Teixeira, J.A.; Rodrigues, L.R. Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei spp. Paracasei A20. Lett. Appl. Microbiol. 2010, 50, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Saharan, B.S. Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol. Rep. 2016, 11, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Vecino, X.; Rodríguez-López, L.; Ferreira, D.; Cruz, J.; Moldes, A.; Rodrigues, L. Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. Int. J. Biol. Macromol. 2018, 109, 971–979. [Google Scholar] [CrossRef]
- López-Prieto, A.; Vecino, X.; Rodríguez-López, L.; Moldes, A.B.; Cruz, J.M. A Multifunctional Biosurfactant Extract Obtained From Corn Steep Water as Bactericide for Agrifood Industry. Foods 2019, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Wang, Y.; Zhang, W.; Ying, H.; Wang, P. Novel surfactant peptide for removal of biofilms. Colloids Surf. B Biointerfaces 2018, 172, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Fracchia, L.; Cavallo, M.; Allegrone, G.; Martinotti, M.G. A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. Appl. Microbiol. Biotechnol. 2010, 2, 827–837. [Google Scholar]
- Ceresa, C.; Tessarolo, F.; Caola, I.; Nollo, G.; Cavallo, M.; Rinaldi, M.; Fracchia, L. Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. J. Appl. Microbiol. 2015, 118, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.R.; Van Der Mei, H.; Teixeira, J.A.; Oliveira, R. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl. Microbiol. Biotechnol. 2004, 66, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Hull, S.R.; Yang, B.Y.; Venzke, D.; Kulhavy, K.; Montgomery, R. Composition of Corn Steep Water during Steeping. J. Agric. Food Chem. 1996, 44, 1857–1863. [Google Scholar] [CrossRef]
- López-Prieto, A.; Martínez-Padrón, H.; Rodríguez-López, L.; Moldes, A.B.; Cruz, J.M. Isolation and characterization of a microorganism that produces biosurfactants in corn steep water. CyTA J. Food 2019, 17, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Vecino, X.; Barbosa-Pereira, L.; Devesa-Rey, R.; Cruz, J.M.; Moldes, A.B.; Menduiña, A.B.M. Optimization of liquid–liquid extraction of biosurfactants from corn steep liquor. Bioprocess Biosyst. Eng. 2015, 38, 1629–1637. [Google Scholar] [CrossRef]
- European Legislation (2009/32/EC). Safe Processing: Common Standards for Extraction Solvents. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0032&from=EN (accessed on 21 January 2020).
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting Nitrogen into Protein—Beyond 6.25 and Jones’ Factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- Box, G.E.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation and Discovery, 2nd ed.; Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Rodríguez-López, L.; Rincon-Fontan, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Preservative and irritant capacity of biosurfactants from different sources: A comparative study. J. Pharm. Sci. 2019, 108, 2296–2304. [Google Scholar] [CrossRef]
- Lemos-Carolino, M.; Madeira-Lopes, A.; Van Uden, N. The temperature profile of the pathogenic yeast Candida albicans. J. Basic Microbiol. 1982, 22, 705–709. [Google Scholar] [CrossRef]
- Passamani, F.R.F.; Hernandes, T.; Lopes, N.A.; Bastos, S.C.; Santiago, W.D.; Cardoso, M.D.G.; Batista, L.R. Effect of Temperature, Water Activity, and pH on Growth and Production of Ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian Grapes. J. Food Prot. 2014, 77, 1947–1952. [Google Scholar] [CrossRef] [PubMed]
- Vieira, D.B.; Carmona-Ribeiro, A.M. Cationic lipids and surfactants as antifungal agents: Mode of action. J. Antimicrob. Chemother. 2006, 58, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Basit, M.; Rasool, M.H.; Naqvi, S.A.R.; Waseem, M.; Aslam, B. Biosurfactants production potential of native strains of Bacillus cereus and their antimicrobial, cytotoxic and antioxidant activities. Pak. J. Pharm. Sci. 2018, 31, 251–256. [Google Scholar] [PubMed]
- Janek, T.; Krasowska, A.; Czyżnikowska, Ż.; Łukaszewicz, M. Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polysterene and silicone surfaces: An experimental and computational approach. Front. Microbiol. 2018, 9, 2441. [Google Scholar] [CrossRef] [Green Version]
Variable | Nomenclature | Units | Range of Variation |
---|---|---|---|
(a) Independent variables | |||
Biosurfactant concentration | BS | mg/mL | 0.33–0.99 |
Temperature | T | °C | 4–40 |
Incubation time | t | days | 5–11 |
Variable | Nomenclature | Definition | Range of Variation |
(b) Dimensionless, coded independent variables | |||
Dimensionless BS | x1 | (BS − 0.66)/0.33 | (−1,1) |
Dimensionless T | x2 | (T − 22)/18 | (−1,1) |
Dimensionless t | x3 | (t − 8)/3 | (−1,1) |
Variable | Nomenclature | Units | |
(c) Dependent variables studied | |||
Growth inhibition of A. brasiliensis | y1 | % | |
Growth inhibition of C. albicans | y2 | % |
Coded Independent Variable | Uncoded Independent Variable | Dependent Variable | ||||||
---|---|---|---|---|---|---|---|---|
Exp. | x1 | x2 | x3 | x1 (mg/mL) | x2 (°C) | x3 (Days) | y1 | y2 |
1 | 0 | −1 | −1 | 0.66 | 4 | 5 | 100.00 | 0.00 |
2 | 0 | 1 | −1 | 0.66 | 40 | 5 | 31.71 | 62.55 |
3 | 0 | −1 | 1 | 0.66 | 4 | 11 | 100.00 | 0.00 |
4 | 0 | 1 | 1 | 0.66 | 40 | 11 | 26.91 | 49.95 |
5 | −1 | −1 | 0 | 0.33 | 4 | 8 | 100.00 | 17.79 |
6 | −1 | 1 | 0 | 0.33 | 40 | 8 | 18.88 | 40.89 |
7 | 1 | −1 | 0 | 0.99 | 4 | 8 | 100.00 | 0.00 |
8 | 1 | 1 | 0 | 0.99 | 40 | 8 | 82.52 | 76.33 |
9 | −1 | 0 | −1 | 0.33 | 22 | 5 | 0.00 | 6.42 |
10 | −1 | 0 | 1 | 0.33 | 22 | 11 | 0.00 | 0.00 |
11 | 1 | 0 | −1 | 0.99 | 22 | 5 | 30.43 | 11.07 |
12 | 1 | 0 | 1 | 0.99 | 22 | 11 | 67.87 | 0.00 |
13 | 0 | 0 | 0 | 0.66 | 22 | 8 | 0.00 | 0.00 |
14 | 0 | 0 | 0 | 0.66 | 22 | 8 | 0.00 | 0.00 |
15 | 0 | 0 | 0 | 0.66 | 22 | 8 | 0.00 | 0.00 |
y1 | py1 | y2 | py2 | |
---|---|---|---|---|
β0 | 0 | 0.0015 a | 0 | <0.0001 a |
β1 | 20.24 | 0.0034 a | 2.79 | 0.0473 a |
β11 | 17.64 | 0.0272 a | 5.00 | 0.0243 a |
β2 | −30 | 0.0006 a | 26.49 | <0.0001 a |
β22 | 57.71 | 0.0002 a | 28.75 | <0.0001 a |
β3 | 4.08 | 0.3411 | −3.76 | 0.0168 a |
β33 | 6.94 | 0.2785 | −0.6284 | 0.7053 |
β12 | 15.91 | 0.0338 a | 13.31 | 0.0003 a |
β13 | 9.36 | 0.1488 | −1.16 | 0.4747 |
β23 | −1.2 | 0.8355 | −3.15 | 0.0909 |
A. brasiliensis | C. albicans | ||||||
---|---|---|---|---|---|---|---|
T (°C) | t (Days) | Biosurfactant Concentration (mg/mL) | Growth Inhibition (%) | T (°C) | t (Days) | Biosurfactant Concentration (mg/mL) | Growth Inhibition (%) |
4 | 5.0 | 0.33 | 100 ** | 4 | 5.0 | 0.99 | 17.9 |
10.0 | 0.35 | 100 ** | |||||
25 | 10.2 | 0.99 | 50 * | 25 | 5.0 | 0.99 | 20.0 |
11.0 | 0.99 | 57 * |
Microorganism. | Biosurfactant Type | Pathogenic Strain | Growth Inhibition (%) | Biosurfactant Concentration (mg/mL) | Extraction Method | Reference |
---|---|---|---|---|---|---|
Bacillus | Extracellular | A. brasiliensis | 95 | 1 | L-L extraction | Rodríguez-López et al. [32] |
C. albicans | 0 | 1 | ||||
B. cereus | Not defined | A. niger | >50 | 7.6 | MSM | Basit et al. [36] |
C. albicans | >50 | 7.6 | ||||
L. paracasei A20 | Cell-bound | C. albicans | 56.3 | 3.12 | PBS | Gudiña et al. [18] |
65.3 | 6.25 | |||||
Rhodococcus fascians BD8 | Extracellular | C. albicans | 30 | 0.5 | L-L extraction | Janek et al. [37] |
27 | 0.25 | |||||
C. albicans | 7 | 0.5 | ||||
7 | 0.25 | |||||
L. helveticus | Cell-bound | C. albicans | <50 | 25 | PBS | Sharma et al. [19] |
L. pentosus | Cell-bound | C. albicans | <20 | 3.13 | PBS | Vecino et al. [20] |
Cell-bound | C. albicans | <10 | 3.13 | PB | ||
L. paracasei | Cell-bound | C. albicans | <5 | 3.13 | PBS | |
Cell-bound | C. albicans | <20 | 3.13 | PB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Prieto, A.; Vecino, X.; Rodríguez-López, L.; Moldes, A.B.; Cruz, J.M. Fungistatic and Fungicidal Capacity of a Biosurfactant Extract Obtained from Corn Steep Water. Foods 2020, 9, 662. https://doi.org/10.3390/foods9050662
López-Prieto A, Vecino X, Rodríguez-López L, Moldes AB, Cruz JM. Fungistatic and Fungicidal Capacity of a Biosurfactant Extract Obtained from Corn Steep Water. Foods. 2020; 9(5):662. https://doi.org/10.3390/foods9050662
Chicago/Turabian StyleLópez-Prieto, Alejandro, Xanel Vecino, Lorena Rodríguez-López, Ana Belén Moldes, and José Manuel Cruz. 2020. "Fungistatic and Fungicidal Capacity of a Biosurfactant Extract Obtained from Corn Steep Water" Foods 9, no. 5: 662. https://doi.org/10.3390/foods9050662