Co-Benefits of Eichhornia Crassipes (Water Hyacinth) as Sustainable Biomass for Biofuel Production and Aquatic Ecosystem Phytoremediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Water Samples
2.2. Collection of Aquatic Macrophytes
2.3. Analysis of Eutrophic Lake Water for Physical and Chemical Properties
3. Results
3.1. Water Quality Measurement
3.2. Removal Efficiencies of Pollutants/Phytoextraction
3.3. Sample A. Phytoextraction in the Laboratory (Uttara Lake)
3.4. Sample B. Phytoextraction in the Laboratory (Dhanmondi Lake)
3.5. Sample C. Phytoextraction in the Laboratory (Gulshan Lake)
3.6. Sample D. Phytoextraction at the Laboratory (Hatirjheel Lake)
3.7. Biofuels from Water Hyacinth
4. Technological Potential Modeling of Bioenergy Production
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef]
- Rezania, S.; Ponraj, M.; Talaiekhozani, A.; Mohamad, S.E.; Din, M.F.M.; Taib, S.M.; Sabbagh, F.; Sairan, F.M. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J. Environ. Manag. 2015, 163, 125–133. [Google Scholar] [CrossRef]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavaş, I.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef]
- Miretzky, P.; Saralegui, A.; Cirelli, A.F. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 2004, 57, 997–1005. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, Z.; Liu, M.; Liu, H.; Wang, Y.; Wen, X.; Zhang, Y.; Yan, S. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecol. Eng. 2016, 95, 753–762. [Google Scholar] [CrossRef]
- Olguín, E.J.; García-López, D.A.; González-Portela, R.E.; Sánchez-Galván, G. Year-round phytofiltration lagoon assessment using Pistia stratiotes within a pilot-plant scale biorefinery. Sci. Total Environ. 2017, 592, 326–333. [Google Scholar] [CrossRef]
- Nabi, A.; Alam, A.; Hoque, S. Treatment of wastewater with free floating aquatic macrophyte—Eichhornia crassipes. Jahangirnagar Univ. Environ. Bull. 2016, 5, 1–9. [Google Scholar]
- Alam, A.R.; Hoque, S. Phytoremediation of industrial wastewater by culturing aquatic macrophytes, Trapa natans L. and Salvinia cucullata Roxb. Jahangirnagar Univ. J. Biol. Sci. 2017, 6, 19–27. [Google Scholar] [CrossRef]
- Ali, N.; Chaudhary, B.; Khandelwal, S. Better use of water hyacinth for fuel, manure and pollution free environment. Indian J. Environ. Prot. 2004, 24, 297–303. [Google Scholar]
- Nahar, K. Azolla (Caroliniana): An Aquatic Energy Crop for Remediation of Eutrophic Ecosystems with Prospect of Biofuel Production in Bangladesh. Asia Pac. J. Energy Environ. 2020, 7, 79–86. [Google Scholar]
- Malik, A. Environmental challenge vis a vis opportunity: The case of water hyacinth. Environ. Int. 2007, 33, 122–138. [Google Scholar] [CrossRef]
- Melignani, E.; de Cabo, L.I.; Faggi, A.M. Copper uptake by Eichhornia crassipes exposed at high level concentrations. Environ. Sci. Pollut. Res. 2015, 22, 8307–8315. [Google Scholar] [CrossRef]
- Malar, S.; Sahi, S.V.; Favas, P.J.; Venkatachalam, P. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)]. Environ. Sci. Pollut. Res. 2015, 22, 4597–4608. [Google Scholar] [CrossRef]
- Ansari, A.A.; Naeem, M.; Gill, S.S.; AlZuaibr, F.M. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egypt. J. Aquat. Res. 2020, 46, 371–376. [Google Scholar] [CrossRef]
- Rai, P.K. Eichhornia crassipes as a potential phytoremediation agent and an important bioresource for Asia Pacific region. Environ. Skept. Crit. 2016, 5, 12. [Google Scholar]
- Nahar, K. Biogas production from water hyacinth (Eichhornia crassipes). Asian J. Appl. Sci. Eng. 2012, 1, 9–13. [Google Scholar]
- Nahar, K.; Sunny, S.A. Duckweed-based clean energy production dynamics (ethanol and biogas) and phyto-remediation potential in Bangladesh. Model. Earth Syst. Environ. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Ganguly, A.; Chatterjee, P.; Dey, A. Studies on ethanol production from water hyacinth—A review. Renew. Sustain. Energy Rev. 2012, 16, 966–972. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, J.; Saini, A.; Kumar, P. Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environ. Sustain. 2019, 2, 55–65. [Google Scholar] [CrossRef]
- Nigam, J. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. J. Biotechnol. 2002, 97, 107–116. [Google Scholar] [CrossRef]
- Lewandowski, I.; Scurlock, J.M.; Lindvall, E.; Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 2003, 25, 335–361. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mukherjee, P.; Chatterjee, N. Optimization of enzymatic hydrolysis of water hyacinth by Trichoderma reesei vis-a-vis production of fermentable sugars. Acta Aliment. 2008, 37, 367–377. [Google Scholar] [CrossRef]
- Aswathy, U.; Sukumaran, R.K.; Devi, G.L.; Rajasree, K.; Singhania, R.R.; Pandey, A. Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy. Bioresour. Technol. 2010, 101, 925–930. [Google Scholar] [CrossRef]
- Zaldivar, J.; Nielsen, J.; Olsson, L. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 2001, 56, 17–34. [Google Scholar] [CrossRef]
- Idrees, M.; Adnan, A.; Sheikh, S.; Qureshic, F.A. Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production. EXCLI J. 2013, 12, 30. [Google Scholar]
- Wang, Z.; Zheng, F.; Xue, S. The economic feasibility of the valorization of water hyacinth for bioethanol production. Sustainability 2019, 11, 905. [Google Scholar] [CrossRef]
- Rodrigues, A.C.D.; do Amaral Sobrinho, N.M.B.; dos Santos, F.S.; dos Santos, A.M.; Pereira, A.C.C.; Lima, E.S.A. Biosorption of toxic metals by water lettuce (Pistia stratiotes) biomass. Water Air Soil Pollut. 2017, 228, 156. [Google Scholar] [CrossRef]
- Rodrigues, A.C.D.; Rocha, M.V.d.C.; Lima, E.S.A.; Pinho, C.F.d.; Santos, A.M.d.; Santos, F.S.d.; Amaral Sobrinho, N.M.B.d. Potential of water lettuce (Pistia stratiotes L.) for phytoremediation: Physiological responses and kinetics of zinc uptake. Int. J. Phytoremediation 2020, 22, 1019–1027. [Google Scholar] [CrossRef]
- Gupta, P.; Roy, S.; Mahindrakar, A.B. Treatment of water using water hyacinth, water lettuce and vetiver grass–a review. System 2012, 49, 50. [Google Scholar] [CrossRef]
- Galal, T.M.; Farahat, E.A. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Environ. Monit. Assess. 2015, 187, 701. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.A.; Ramasami, E. Biotechnological Methods of Pollution Control; University Press: Hyderabad, India, 1999. [Google Scholar]
- Sooknah, R.D.; Wilkie, A.C. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol. Eng. 2004, 22, 27–42. [Google Scholar] [CrossRef]
- Mahmood, Q.; Zheng, P.; Islam, E.; Hayat, Y.; Hassan, M.; Jilani, G.; Jin, R. Lab scale studies on water hyacinth (Eichhornia crassipes Marts Solms) for biotreatment of textile wastewater. Casp. J. Environ. Sci. 2005, 3, 83–85. [Google Scholar]
- Lu, Q.; He, Z.L.; Graetz, D.A.; Stoffella, P.J.; Yang, X. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ. Sci. Pollut. Res. 2010, 17, 84–96. [Google Scholar] [CrossRef]
- Gaballah, M.; Ismail, K.; Beltagy, A.; Zein Eldin, A.; Ismail, M. Wastewater treatment potential of water lettuce (Pistia stratiotes) with modified engineering design. J. Water Chem. Technol. 2019, 41, 197–205. [Google Scholar] [CrossRef]
- Zhang, Q.; Weng, C.; Huang, H.; Achal, V.; Wang, D. Optimization of bioethanol production using whole plant of water hyacinth as substrate in simultaneous saccharification and fermentation process. Front. Microbiol. 2016, 6, 1411. [Google Scholar] [CrossRef]
- Nahar, K.; Sunny, S.A. Climate Change and State of Renewable Energy in Bangladesh: An Environmental Analysis. In Climate Change in Bangladesh: A Cross-Disciplinary Framework; Springer: Cham, Switzerland, 2021; pp. 25–45. [Google Scholar]
- Dipu, S.; Kumar, A.A.; Thanga, V.S.G. Phytoremediation of dairy effluent by constructed wetland technology. Environmentalist 2011, 31, 263–278. [Google Scholar] [CrossRef]
- Galal, T.M.; Eid, E.M.; Dakhil, M.A.; Hassan, L.M. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Int. J. Phytoremediation 2018, 20, 440–447. [Google Scholar] [CrossRef]
- Nassouhi, D.; Ergönül, M.B.; Fikirderşici, Ş. The use of some submersed and free floating aquatic macrophytes in the bioremediation of heavy metal pollution. SDU-JEFF 2018, 14, 148–165. [Google Scholar]
- Goswami, T.; Saikia, C. Water hyacinth—A potential source of raw material for greaseproof paper. Bioresour. Technol. 1994, 50, 235–238. [Google Scholar] [CrossRef]
- Awuah, E.; Oppong-Peprah, M.; Lubberding, H.; Gijzen, H. Comparative performance studies of water lettuce, duckweed, and algal-based stabilization ponds using low-strength sewage. J. Toxicol. Environ. Health Part A 2004, 67, 1727–1739. [Google Scholar] [CrossRef]
- Patel, S. Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: An overview. Rev. Environ. Sci. Bio/Technol. 2012, 11, 249–259. [Google Scholar] [CrossRef]
- El-Shinnawi, M.; El-Din, M.A.; El-Shimi, S.; Badawi, M. Biogas production from crop residues and aquatic weeds. Resour. Conserv. Recycl. 1989, 3, 33–45. [Google Scholar] [CrossRef]
- Singhal, V.; Rai, J. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresour. Technol. 2003, 86, 221–225. [Google Scholar] [CrossRef]
- Wang, Z.; Calderon, M.M. Environmental and economic analysis of application of water hyacinth for eutrophic water treatment coupled with biogas production. J. Environ. Manag. 2012, 110, 246–253. [Google Scholar] [CrossRef]
- Nahar, K.; Hoque, S. Phytoremediation to improve eutrophic ecosystem by floating macrophyte water lettuce (Pistia stratiotes) at lab scale. Egypt. J. Aquat. Res. 2021, 47, 231–237. [Google Scholar] [CrossRef]
- Chen, B. Ecological Engineering of Water Hyacinth Control and Utilization in River Basins. Ph.D. Thesis, Tongji University, Shanghai, China, 2007. [Google Scholar]
- Polprasert, C.; Mya, S. Anaerobic Digestion: Principles and Practices for Biogas Systems; Gunnerson, C.G., Stuckey, D.C., Eds.; Integrated Resource Recovery Series, UNDP Project Management Report, No. 5; World Bank technical paper; No. 49: The World Bank: Washington, DC, USA, 1986; p. xv, 154. [Google Scholar]
- Bhattacharya, A.; Kumar, P. Water hyacinth as a potential biofuel crop. Electron. J. Environ. Agric. Food Chem. 2010, 9, 112–122. [Google Scholar]
- Magdum, S.; More, S.; Nadaf, A. Biochemical conversion of acid-pretreated water hyacinth (Eichhornia crassipes) to alcohol using Pichia Stipitis NCIM3497. Int. J. Adv. Biotechnol. Res. 2012, 3, 585–590. [Google Scholar]
- Nahar, K.; Sunny, S.A. Jatropha curcas L: A sustainable feedstock for the production of bioenergy and by products. J. Energy Nat. Resour. 2014, 3, 51–57. [Google Scholar] [CrossRef]
- Nahar, K.; Sunny, S.A. Biodiesel, Glycerin and Seed-cake Production from Roof-top Gardening of Jatropha curcas L. Curr. Environ. Eng. 2016, 3, 18–31. [Google Scholar] [CrossRef]
- Manivannan, A.; Narendhirakannan, R. Biodegradation of lignocellulosic residues of water hyacinth (Eichhornia crassipes) and response surface methodological approach to optimize bioethanol production using fermenting yeast Pachysolen tannophilus NRRL Y-2460. Int. J. Bioeng. Life Sci. 2014, 8, 153–158. [Google Scholar]
- Awasthi, M.; Kaur, J.; Rana, S. Bioethanol production through water hyacinth, Eichhornia crassipes via optimization of the pretreatment conditions. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 42–46. [Google Scholar]
- Azhar, S.H.M.; Abdulla, R.; Jambo, S.A.; Marbawi, H.; Gansau, J.A.; Faik, A.A.M.; Rodrigues, K.F. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 2017, 10, 52–61. [Google Scholar]
- Ma, F.; Yang, N.; Xu, C.; Yu, H.; Wu, J.; Zhang, X. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour. Technol. 2010, 101, 9600–9604. [Google Scholar] [CrossRef] [PubMed]
- Narra, M.; Divecha, J.; Shah, D.; Balasubramanian, V.; Vyas, B.; Harijan, M.; Macwan, K. Cellulase production, simultaneous saccharification and fermentation in a single vessel: A new approach for production of bio-ethanol from mild alkali pre-treated water hyacinth. J. Environ. Chem. Eng. 2017, 5, 2176–2181. [Google Scholar] [CrossRef]
- Sunny, S. Green Buildings, Clean Transport and the Low Carbon Economy: Towards Bangladesh’s Vision of a Greener Tomorrow; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2011. [Google Scholar]
- Nahar, K.; Sunny, S.A.; Shazi, S.S. Land use requirement and urban growth implications for the production of biofuel in Bangladesh. Forest 2011, 1350, 92. [Google Scholar]
- Bergier, I.; Salis, S.M.; Miranda, C.H.; Ortega, E.; Luengo, C.A. Biofuel production from water hyacinth in the Pantanal wetland. Ecohydrol. Hydrobiol. 2012, 12, 77–84. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, Y.; Han, H.; Weng, C. Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresour. Technol. 2018, 251, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Balagurumurthy, B.; Prakash, A.; Bhaskar, T. Catalytic hydrothermal liquefaction of water hyacinth. Bioresour. Technol. 2015, 178, 157–165. [Google Scholar] [CrossRef]
- Das, S.; Goswami, S.; Talukdar, A.D. Physiological responses of water hyacinth, Eichhornia crassipes (Mart.) Solms, to cadmium and its phytoremediation potential. Turk. J. Biol. 2016, 40, 84–94. [Google Scholar] [CrossRef]
- Masami, G.O.; Usui, I.; Urano, N. Ethanol production from the water hyacinth Eichhornia crassipes by yeast isolated from various hydrospheres. Afr. J. Microbiol. Res. 2008, 2, 110–113. [Google Scholar]
- Kunatsa, T.; Madiye, L.; Chikuku, T.; Shonhiwa, C.; Musademba, D. Feasibility study of biogas production from water hyacinth. Int. J. Eng. Technol. 2013, 3, 119–128. [Google Scholar]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Leung, H.; Duzgoren-Aydin, N.; Au, C.; Krupanidhi, S.; Fung, K.; Cheung, K.; Wong, Y.; Peng, X.; Ye, Z.; Yung, K.; et al. Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): Bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environ. Sci. Pollut. Res. 2017, 24, 9079–9088. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.T.; Mahmood, T.; Malik, S.A. Phytoremediation technologies for Ni++ by water hyacinth. Afr. J. Biotechnol. 2010, 9, 8648–8660. [Google Scholar]
- Reyes, A.; Santos, M. Phytoremediation potential of Water Hyacinth (Eichhornia crassipes) in tanks with high organic matter. Int. J. Fish Aquat. Stud. 2019, 7, 107–109. [Google Scholar]
- Zimmels, Y.; Kirzhner, F.; Malkovskaja, A. Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. J. Environ. Manag. 2006, 81, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Mardalena, M.; Faizal, M.; Napoleon, A. The Absorption of Iron (Fe) and Manganese (Mn) from Coal Mining Wastewater with Phytoremediation Technique Using Floating Fern (Salvinia natans), Water Lettuce (Pistia stratiotes) and Water Hyacinth (Eichornia crassipes). Biol. Res. J. 2018, 4, 1–7. [Google Scholar]
- Shirinpur-Valadi, A.; Hatamzadeh, A.; Sedaghathoor, S. Study of the accumulation of contaminants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna × generalis in some contaminated aquatic environments. Environ. Sci. Pollut. Res. 2019, 26, 21340–21350. [Google Scholar] [CrossRef]
- Sunny, S.A. Globalization and complexity of environmental governance in sustainable development and climate change policy diffusion mechanisms in developing countries-the American response and the case of Bangladesh. J. Sustain. Dev. Stud. 2013, 3, 101–126. [Google Scholar]
# | Physiochemical Parameters | Parameters before Remediation | Parameters after Remediation | % Reduction/Increment |
---|---|---|---|---|
1 | pH | 6.5 | 7.24 | 11% |
2 | TDSs | 209 | 203 | −3% |
3 | DO | 0.88 | 10.14 | 1052% |
4 | EC | 417 | 410 | −2% |
5 | NaCl | 0.8 | 0.8 | 0% |
6 | Turbidity | 64 | 18.05 | −72% |
# | Physiochemical Parameters | Parameters before Remediation | Parameters after Remediation | % Reduction/Increment |
---|---|---|---|---|
1 | pH | 6.3 | 7.24 | 15% |
2 | TDSs | 159 | 136 | −14% |
3 | DO | 2.7 | 13.19 | 388% |
4 | EC | 319 | 273 | −14% |
5 | NaCl | 0.6 | 0.5 | −17% |
6 | Turbidity | 13.55 | 2.6 | −81% |
# | Physiochemical Parameters | Parameters before Remediation | Parameters after Remediation | % Reduction/Increment |
---|---|---|---|---|
1 | pH | 6.2 | 8.22 | 32% |
2 | TDSs | 309 | 213 | −31% |
3 | DO | 0.58 | 14.61 | 2419% |
4 | EC | 619 | 427 | −31% |
5 | NaCl | 12 | 0.8 | −93% |
6 | Turbidity | 24.36 | 17.16 | −29% |
# | Physiochemical Parameters | Parameters before Remediation | Parameters after Remediation | % Reduction/Increment |
---|---|---|---|---|
1 | pH | 5.8 | 7.4 | 27% |
2 | TDSs | 479 | 398 | 17% |
3 | DO | 0.96 | 9.33 | 871% |
4 | EC | 961 | 797 | −17% |
5 | NaCl | 1.9 | 1.6 | −16% |
6 | Turbidity | 411 | 24.65 | −94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahar, K.; Sunny, S.A. Co-Benefits of Eichhornia Crassipes (Water Hyacinth) as Sustainable Biomass for Biofuel Production and Aquatic Ecosystem Phytoremediation. Fuels 2024, 5, 317-333. https://doi.org/10.3390/fuels5030018
Nahar K, Sunny SA. Co-Benefits of Eichhornia Crassipes (Water Hyacinth) as Sustainable Biomass for Biofuel Production and Aquatic Ecosystem Phytoremediation. Fuels. 2024; 5(3):317-333. https://doi.org/10.3390/fuels5030018
Chicago/Turabian StyleNahar, Kamrun, and Sanwar Azam Sunny. 2024. "Co-Benefits of Eichhornia Crassipes (Water Hyacinth) as Sustainable Biomass for Biofuel Production and Aquatic Ecosystem Phytoremediation" Fuels 5, no. 3: 317-333. https://doi.org/10.3390/fuels5030018