Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Next Issue
Volume 5, December
Previous Issue
Volume 5, June
 
 

Fuels, Volume 5, Issue 3 (September 2024) – 17 articles

Cover Story (view full-size image): This study theoretically investigates the effect of dissolved iron (Fe2+) content in underground hydrogen (H2) storage systems. Reservoirs targeted for H2 storage often contain some iron (Fe3+) oxide/hydroxide phases that undergo reductive dissolution in the presence of H2. The dissolved Fe2+ impacts the spatiotemporal evolution of porosity and permeability and has significant implications for the long-term integrity of reservoirs. Numerical simulations based on brine–mineral–gas interactions show that reservoirs with high amounts of dissolved Fe2+ (more than 1 molal) sustain the stability of iron oxide phases by retarding their redox transformations preventing reservoir disintegration. Therefore, reservoirs with higher dissolved Fe2+ are proposed to be ideal for long-term (>10 years) H2 storage. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
10 pages, 2891 KiB  
Article
Forming Ni-Fe and Co-Fe Bimetallic Structures on SrTiO3-Based SOFC Anode Candidates
by Kinga Kujawska, Wojciech Koliński and Beata Bochentyn
Fuels 2024, 5(3), 564-573; https://doi.org/10.3390/fuels5030031 - 20 Sep 2024
Viewed by 594
Abstract
The aim of this work was to verify the possibility of forming Ni-Fe and Co-Fe alloys via topotactic ion exchange exsolution in Fe-infiltrated (La,Sr,Ce)0.9(Ni,Ti)O3-δ or (La,Sr,Ce)0.9(Co,Ti)O3-δ ceramics. For this purpose, samples were synthesized using the Pechini method [...] Read more.
The aim of this work was to verify the possibility of forming Ni-Fe and Co-Fe alloys via topotactic ion exchange exsolution in Fe-infiltrated (La,Sr,Ce)0.9(Ni,Ti)O3-δ or (La,Sr,Ce)0.9(Co,Ti)O3-δ ceramics. For this purpose, samples were synthesized using the Pechini method and then infiltrated with an iron nitrate solution. The reduction process in dry H2 forced the topotactic ion exchange exsolution, leading to the formation of additional round-shape structures on the surfaces of grains. EDS scans and XRD analysis confirmed the formation of bimetallic alloys, which suggests that these materials have great potential for further use as anode materials for Solid Oxide Fuel Cells (SOFCs). Full article
Show Figures

Figure 1

16 pages, 3237 KiB  
Article
A Comparative Analysis of the Prediction of Gas Condensate Dew Point Pressure Using Advanced Machine Learning Algorithms
by Thitaree Lertliangchai, Birol Dindoruk, Ligang Lu, Xi Yang and Utkarsh Sinha
Fuels 2024, 5(3), 548-563; https://doi.org/10.3390/fuels5030030 - 16 Sep 2024
Viewed by 815
Abstract
Dew point pressure (DPP) emerges as a pivotal factor crucial for forecasting reservoir dynamics regarding condensate-to-gas ratio and addressing production/completion hurdles, alongside calibrating EOS models for integrated simulation. However, DPP presents challenges in terms of predictability. Acknowledging these complexities, we introduce a state-of-the-art [...] Read more.
Dew point pressure (DPP) emerges as a pivotal factor crucial for forecasting reservoir dynamics regarding condensate-to-gas ratio and addressing production/completion hurdles, alongside calibrating EOS models for integrated simulation. However, DPP presents challenges in terms of predictability. Acknowledging these complexities, we introduce a state-of-the-art approach for DPP estimation utilizing advanced machine learning (ML) techniques. Our methodology is juxtaposed against published empirical correlation-based methods on two datasets with limited sizes and diverse inputs. With superior performance over correlation-based estimators, our ML approach demonstrates adaptability and resilience even with restricted training datasets, spanning various fluid classifications. We acquired condensate PVT data from publicly available sources and GeoMark RFDBASE, encompassing dew point pressure (the target variable), as well as compositional data (mole percentages of each component), temperature, molecular weight (MW), and specific gravity (SG) of heptane plus, which served as input variables. Before initiating the study, thorough assessments of measurement quality and results using statistical methods were conducted leveraging domain expertise. Subsequently, advanced ML techniques were employed to train predictive models with cross-validation to mitigate overfitting to the limited datasets. Our models were juxtaposed against the foremost published DDP estimators utilizing empirical correlation-based methods, with correlation-based estimators also trained on the underlying datasets for equitable comparison. To improve outcomes, pseudo-critical properties and artificial proxy features were utilized, leveraging generalized input data. Full article
Show Figures

Figure 1

15 pages, 2514 KiB  
Article
Development of a Design Tool for Performance Estimation and Validation Proton Exchange Membrane Fuel Cell: Verification and Validation for 20 KW Commercial Fuel Cell
by Angelo Leto and Giuseppe Di Lorenzo
Fuels 2024, 5(3), 533-547; https://doi.org/10.3390/fuels5030029 - 12 Sep 2024
Viewed by 663
Abstract
This work provides an extended description of the tools developed in the Wolfram Mathematica environment to characterize proton exchange membrane (PEM) fuel cells. These tools, with their user-friendly interface, facilitate the calculation of the main parameters required to obtain the PEM fuel cell [...] Read more.
This work provides an extended description of the tools developed in the Wolfram Mathematica environment to characterize proton exchange membrane (PEM) fuel cells. These tools, with their user-friendly interface, facilitate the calculation of the main parameters required to obtain the PEM fuel cell polarization curve, offering a seamless and intuitive experience. Various mathematical models and algorithms are coded to accurately calculate the parameters needed for the polarization curve analysis. This study presents the development and validation of a computational tool designed to simulate the performance of proton exchange membrane (PEM) fuel cells. The tool integrates thermodynamic and electrochemical equations to predict key operational parameters, and was validated using experimental data from a commercial Ballard® PEM fuel cell to ensure its accuracy. The validation process involved comparing the numerical predictions with empirical measurements under various operating conditions. The results demonstrate that the computational tool accurately replicates the performance characteristics observed in the experimental data, confirming its reliability and instilling confidence in its use for simulating PEM fuel cell behavior. This tool offers a valuable resource for optimizing fuel cell design and operation, providing insights into the efficiency, output, and potential areas for improvement. Future work will expand the tool’s capabilities to include degradation mechanisms and long-term performance predictions. This advancement underscores the tool’s potential as a comprehensive solution for academic research and industrial applications in fuel cell technology. Full article
Show Figures

Figure 1

25 pages, 2705 KiB  
Review
Advancements in the Application of CO2 Capture and Utilization Technologies—A Comprehensive Review
by Queendarlyn Adaobi Nwabueze and Smith Leggett
Fuels 2024, 5(3), 508-532; https://doi.org/10.3390/fuels5030028 - 11 Sep 2024
Viewed by 2524
Abstract
Addressing escalating energy demands and greenhouse gas emissions in the oil and gas industry has driven extensive efforts in carbon capture and utilization (CCU), focusing on power plants and industrial facilities. However, utilizing CO2 as a raw material to produce valuable chemicals, [...] Read more.
Addressing escalating energy demands and greenhouse gas emissions in the oil and gas industry has driven extensive efforts in carbon capture and utilization (CCU), focusing on power plants and industrial facilities. However, utilizing CO2 as a raw material to produce valuable chemicals, materials, and fuels for transportation may offer a more sustainable and long-term solution than sequestration alone. This approach also presents promising alternatives to traditional chemical feedstock in industries such as fine chemicals, pharmaceuticals, and polymers. This review comprehensively outlines the current state of CO2 capture technologies, exploring the associated challenges and opportunities regarding their efficiency and economic feasibility. Specifically, it examines the potential of technologies such as chemical looping, membrane separation, and adsorption processes, which are advancing the frontiers of CO2 capture by enhancing efficiency and reducing costs. Additionally, it explores the various methods of CO2 utilization, highlighting the potential benefits and applications. These methods hold potential for producing high-value chemicals and materials, offering new pathways for industries to reduce their carbon footprint. The integration of CO2 capture and utilization is also examined, emphasizing its potential as a cost-effective and efficient approach that mitigates climate change while converting CO2 into a valuable resource. Finally, the review outlines the challenges in designing, developing, and scaling up CO2 capture and utilization processes, providing a comprehensive perspective on the technical and economic challenges that need to be addressed. It provides a roadmap for technologies, suggesting that their successful deployment could result in significant environmental benefits and encourage innovation in sustainable practices within the energy and chemical sectors. Full article
Show Figures

Figure 1

14 pages, 2484 KiB  
Article
Potential for Biogas Production from Water Hyacinth and Banana Peels: A Case Study of Substrates Harvested from Lomé, Togo
by Djangbadjoa Gbiete, Jan Sprafke, Damgou Mani Kongnine, Satyanarayana Narra, Pali Kpelou, Essowè Mouzou and Komi Agboka
Fuels 2024, 5(3), 494-507; https://doi.org/10.3390/fuels5030027 - 9 Sep 2024
Viewed by 1579
Abstract
Climate change and the growing demand for energy have prompted research on alternative eco-friendly energy sources. This study focused on the potential for biogas production from water hyacinth and banana peel waste through physicochemical characterization and batch anaerobic digestion tests. The water hyacinth [...] Read more.
Climate change and the growing demand for energy have prompted research on alternative eco-friendly energy sources. This study focused on the potential for biogas production from water hyacinth and banana peel waste through physicochemical characterization and batch anaerobic digestion tests. The water hyacinth and banana peel samples were dried, ground, and subjected to elemental, proximate, and fiber content analyses. Subsequently, banana peel waste, water hyacinth stems, and leaves were used for batch anaerobic digestion tests in 500 mL glass flask bottles for 21 days under mesophilic conditions in n = 3 trials. Kruskal–Wallis and Dunnett’s tests were performed to identify the significance of the differences in biogas yield among the samples. The analyses of the elemental, proximate, and fiber contents of water hyacinth and banana peels revealed that they possess a suitable chemical composition and essential nutrients for the production of high-yield biogas. The biogas yields from water hyacinth leaves, stems, and banana peels were 280.15, 324.79, and 334.82 mL/g VS, respectively. These findings indicate that water hyacinth and banana peel waste have significant potential for biogas production. Full article
(This article belongs to the Special Issue Biomass Conversion to Biofuels)
Show Figures

Figure 1

18 pages, 7409 KiB  
Article
A Real Case: How to Combine Polarization Curve and EIS Techniques to Identify Problematic Cells in a Commercial PEM Stack
by Guillermo Gómez, Pilar Argumosa and Jesús Maellas
Fuels 2024, 5(3), 476-493; https://doi.org/10.3390/fuels5030026 - 2 Sep 2024
Viewed by 830
Abstract
Nowadays, the mobility sector is assessing different technologies to substitute the internal combustion engines in order to reduce its CO2 emissions; one of these possible alternatives is the Polymer Electrolyte Membrane (PEM) fuel cell. So, the development of non-destructive diagnostic tools that [...] Read more.
Nowadays, the mobility sector is assessing different technologies to substitute the internal combustion engines in order to reduce its CO2 emissions; one of these possible alternatives is the Polymer Electrolyte Membrane (PEM) fuel cell. So, the development of non-destructive diagnostic tools that could identify defective cells and/or any malfunctioning behavior and can be easily embarked on in any vehicle will expand the durability of PEM fuel cells, improve their performance, and enable them to carry out predictive maintenance. In this research, we use an in-house developed methodology that combines the polarization curve and electrochemical impedance spectroscopy (EIS) techniques to characterize different cells of a commercial PEM stack, identifying malfunctioning ones. Full article
Show Figures

Figure 1

18 pages, 10031 KiB  
Article
Steam Reforming of Tar Impurities from Biomass Gasification with Ni-Co/Mg(Al)O Catalysts—Operating Parameter Effects
by Ask Lysne, Ida Saxrud, Kristin Ø. Madsen and Edd A. Blekkan
Fuels 2024, 5(3), 458-475; https://doi.org/10.3390/fuels5030025 - 28 Aug 2024
Viewed by 635
Abstract
The elimination of tar impurities from biomass gasification by catalytic steam reforming can provide clean syngas for downstream biofuel synthesis (Fischer–Tropsch). The effects of key operating parameters in CH4/tar steam reforming were investigated. Ni-Co/Mg(Al)O catalyst performance was tested at model conditions [...] Read more.
The elimination of tar impurities from biomass gasification by catalytic steam reforming can provide clean syngas for downstream biofuel synthesis (Fischer–Tropsch). The effects of key operating parameters in CH4/tar steam reforming were investigated. Ni-Co/Mg(Al)O catalyst performance was tested at model conditions (10/35/25/25/5 wt% CH4/H2/CO/CO2/N2), changing the temperature (650–800 °C), steam-to-carbon ratio (2–5), tar loading (10–30 g/Nm3), and tar composition (toluene, 1-methylenaphthalene, and phenol). Complete tar elimination was achieved under all conditions, at the expense of catalyst deactivation by coke formation. Post-operation coke characterization was obtained with TPO-MS, Raman spectroscopy, and STEM analysis, providing vital insight into coke morphology and location. Critical low-temperature and high-tar loading limits were identified, where rapid deactivation was accompanied by increasing amounts of hard coke species. A coke classification scheme is proposed, including strongly adsorbed surface carbon species (soft coke A), initial scattered carbon filaments (hard coke B1.1), filament clusters and fused filaments (B2), and strongly deactivating bulk encapsulating coke (B3), formed through progressive filament cluster graphitization. High-molecular-weight tar was found to enhance the formation of strongly deactivating metal-particle-encapsulating coke (B1.2). The results contribute to the understanding of coke formation in the presence of biomass gasification tar impurities. Full article
Show Figures

Graphical abstract

19 pages, 7622 KiB  
Article
Impact of Thickness of Pd/Cu Membrane on Performance of Biogas Dry Reforming Membrane Reactor Utilizing Ni/Cr Catalyst
by Akira Nishimura, Syogo Ito, Mizuki Ichikawa and Mohan Lal Kolhe
Fuels 2024, 5(3), 439-457; https://doi.org/10.3390/fuels5030024 - 27 Aug 2024
Viewed by 621
Abstract
The present study pays attention to biogas dry reforming for the purpose of producing H2. It is known that biogas contains approximately 40 vol% CO2, causing a decrease in the efficiency of power generation due to its lower heating [...] Read more.
The present study pays attention to biogas dry reforming for the purpose of producing H2. It is known that biogas contains approximately 40 vol% CO2, causing a decrease in the efficiency of power generation due to its lower heating value compared to natural gas, i.e., CH4. We suggest a hybrid system composed of a biogas dry reforming membrane reactor and a high-temperature fuel cell, i.e., a solid oxide fuel cell (SOFC). Since biogas dry reforming is an endothermic reaction, we adopt a membrane reactor, controlled by providing a non-equilibrium state via H2 separation from the reaction site. The purpose of the present study is to understand the effect of the thickness of the Pd/Cu membrane on the performance of the biogas dry reforming membrane reactor with a Pd/Cu membrane as well as a Ni/Cr catalyst. The impact of the reaction temperature, the molar ratio of CH4:CO2 and the differential pressure between the reaction chamber and the sweep chamber on the performance of the biogas dry reforming membrane reactor with the Pd/Cu membrane as well as the Ni/Cr catalyst was investigated by changing the thickness of the Pd/Cu membrane. It was revealed that we can obtain the highest concentration of H2, of 122,711 ppmV, for CH4:CO2 = 1:1 at a reaction temperature of 600 °C and a differential pressure of 0 MPa and using a Pd/Cu membrane with a thickness of 40 μm. Under these conditions, it can be concluded that the differential pressure of 0 MPa provides benefits for practical applications, especially since no power for H2 separation is necessary. Therefore, the thermal efficiency is improved, and additional equipment, e.g., a pump, is not necessary for practical applications. Full article
Show Figures

Figure 1

45 pages, 2493 KiB  
Review
Advancements in Synthetic Biology for Enhancing Cyanobacterial Capabilities in Sustainable Plastic Production: A Green Horizon Perspective
by Taufiq Nawaz, Liping Gu, Zhong Hu, Shah Fahad, Shah Saud and Ruanbao Zhou
Fuels 2024, 5(3), 394-438; https://doi.org/10.3390/fuels5030023 - 27 Aug 2024
Viewed by 1729
Abstract
This comprehensive review investigates the potential of cyanobacteria, particularly nitrogen-fixing strains, in addressing global challenges pertaining to plastic pollution and carbon emissions. By analyzing the distinctive characteristics of cyanobacteria, including their minimal growth requirements, high photosynthetic efficiency, and rapid growth rates, this study [...] Read more.
This comprehensive review investigates the potential of cyanobacteria, particularly nitrogen-fixing strains, in addressing global challenges pertaining to plastic pollution and carbon emissions. By analyzing the distinctive characteristics of cyanobacteria, including their minimal growth requirements, high photosynthetic efficiency, and rapid growth rates, this study elucidates their crucial role in transforming carbon sequestration, biofuel generation, and biodegradable plastic production. The investigation emphasizes cyanobacteria’s efficiency in photosynthesis, positioning them as optimal candidates for cost-effective bioplastic production with minimized land usage. Furthermore, the study explores their unconventional yet promising utilization in biodiesel production, mitigating environmental concerns such as sulfur emissions and the presence of aromatic hydrocarbons. The resulting biodiesel exhibits significant combustion potential, establishing cyanobacteria as a viable option for sustainable biofuel production. Through a comprehensive assessment of both achievements and challenges encountered during the commercialization process, this review offers valuable insights into the diverse contributions of cyanobacteria. Its objective is to provide guidance to researchers, policymakers, and industries interested in harnessing bio-inspired approaches for structural and sustainable applications, thereby advancing global efforts towards environmentally conscious plastic and biofuel production. Full article
Show Figures

Figure 1

19 pages, 4665 KiB  
Review
A Review of Catalyst Integration in Hydrothermal Gasification
by Emmanuel Galiwango, James Butler and Samira Lotfi
Fuels 2024, 5(3), 375-393; https://doi.org/10.3390/fuels5030022 - 23 Aug 2024
Viewed by 568
Abstract
Industrial scale-up of hydrothermal supercritical water gasification process requires catalytic integration to reduce the high operational temperatures and pressures to enhance controlled chemical reaction pathways, product yields, and overall process economics. There is greater literature disparity in consensus on what is the best [...] Read more.
Industrial scale-up of hydrothermal supercritical water gasification process requires catalytic integration to reduce the high operational temperatures and pressures to enhance controlled chemical reaction pathways, product yields, and overall process economics. There is greater literature disparity in consensus on what is the best catalyst and reactor design for hydrothermal gasification. This arises from the limited research on catalysis in continuous flow hydrothermal systems and rudimentary lab-scale experimentation on simple biomasses. This review summarizes the literature status of catalytic hydrothermal processing, especially for continuous gasification and in situ catalyst handling. The rationale for using low and high temperatures during catalytic hydrothermal processing is highlighted. The role of homogeneous and heterogeneous catalysts in hydrothermal gasification is presented. In addition, the rationale behind certain designs and component selection for catalytic investigations in continuous hydrothermal conversion is highlighted. Furthermore, the effect of different classes of catalysts on the reactor and reactions are elaborated. Overall, design and infrastructural challenges such as plugging, corrosion, agglomeration of the catalysts, catalyst metal leaching, and practical assessment of catalyst integration towards enhancement of process economics still present open questions. Therefore, strategies for catalytic configuration in continuous hydrothermal process must be evaluated on a system-by-system basis depending on the feedstock and experimental goals. Full article
Show Figures

Figure 1

11 pages, 1966 KiB  
Article
Calculation of the Rate Constants of Vacuum Residue Hydrogenation Reactions in the Presence of a Chrysotile/NiTi Nanocatalyst
by Nazerke Balpanova, Murzabek Baikenov, Assanali Ainabayev, Aikorkem Kyzkenova, Gulzhan Baikenova and Almas Tusipkhan
Fuels 2024, 5(3), 364-374; https://doi.org/10.3390/fuels5030021 - 23 Aug 2024
Viewed by 464
Abstract
The paper presents the results of an investigation into the kinetics of catalytic hydrogenation of vacuum residue at temperatures of 380, 400 and 420 °C and different durations, ranging from 30 to 70 min, using a nanocatalyst containing the active metals nickel and [...] Read more.
The paper presents the results of an investigation into the kinetics of catalytic hydrogenation of vacuum residue at temperatures of 380, 400 and 420 °C and different durations, ranging from 30 to 70 min, using a nanocatalyst containing the active metals nickel and titanium supported on chrysotile. It was found that the yield of oils from 30 to 50 wt.% and tars from 12 to 18 wt.% increased with increasing temperatures and reaction times. A slight increase in the proportion of solids in the range of 2.0 to 6.0 wt.% is explained by the activity of the nanocatalyst used. In the study of the kinetics of vacuum residue hydrogenation, using the nanocatalyst developed by the authors, we were able to achieve a low yield of solids with a short contact time as well as a high yield of low-molecular-weight compounds such as oils and tars. To determine the kinetic parameters (rate constants and activation energies), Simpson’s integral method and a random search engine optimization method were used. High values of rate constants are characteristic of reactions in the formation of oils k1, tars k2 and asphaltenes k3 in the temperature range of 380–420 °C. The high values of the rate constants k1, k2 and k3 in the catalytic hydrogenation of the vacuum residue indicate the high reaction rate and activity of the nanocatalyst used. With an increase in temperature from 380 to 420 °C, the rate constant of the formation of gas products from vacuum residue and the conversion of asphaltenes into oils significantly increase, which indicates the accumulation of low-molecular-weight compounds in oils. The activation energy for reactions leading to the formation of oils, tars, asphaltenes, gas and solid products was 75.7, 124.8, 40.7, 205.4 and 57.2 kJ/mol, respectively. These data indicate that the processes of vacuum residue hydrogenation with the formation of oils and asphaltenes require the lowest energy inputs. Reducing the process temperature to increase the selectivity of the vacuum residue hydrogenation process when using the prepared nanocatalyst is recommended. The formation of oils at the initial stage plays a key role in the technology of the heavy hydrocarbon feedstock (HHF) hydrogenation process. Perhaps the resulting oils can serve as an additional solvent for high-molecular-weight products such as asphaltenes, as evidenced by the low activation energy of the process. Full article
Show Figures

Figure 1

17 pages, 4191 KiB  
Article
Comparative Analysis of Aeroshell 500 Oil Effects on Jet A and Diesel-Powered Aviation Microturbines
by Grigore Cican, Radu Mirea and Maria Căldărar
Fuels 2024, 5(3), 347-363; https://doi.org/10.3390/fuels5030020 - 1 Aug 2024
Viewed by 809
Abstract
This study aims to analyze the influence of adding Aeroshell 500 oil on physicochemical properties. It was found that the oil’s kinematic viscosity is much higher than that of diesel and Jet A, with a higher density and flash point as well. Elemental [...] Read more.
This study aims to analyze the influence of adding Aeroshell 500 oil on physicochemical properties. It was found that the oil’s kinematic viscosity is much higher than that of diesel and Jet A, with a higher density and flash point as well. Elemental analysis revealed a higher carbon content and lower hydrogen content in Aeroshell oil compared to Jet A and diesel, with lower calorific power. Adding 5% oil increases the mixture viscosity, flash point, and density; decreases the calorific power; and increases the carbon content for both diesel and Jet A. In the second part, mathematical models determined the combustion temperatures for Jet A, diesel, Jet A plus 5% Aeroshell 500 oil, and diesel plus 5% Aeroshell 500 oil, based on an air excess from one to five. Elemental analysis determined the oxygen and air quantities for these mixtures and stoichiometric combustion reaction for CO2 and H2O. Regarding the CO2 quantity, adding 5% Aeroshell 500 to Jet A increases it from 3.143 kg to 3.159 kg for each kilogram of mixture burned in the stoichiometric reaction. Similarly, adding the oil to diesel in a 5% proportion increases the CO2 quantity from 3.175 to 3.190 in the stoichiometric reaction. Through experimentation with the Jet Cat P80 microturbine engine across four operating regimes, it was observed that the combustion chamber temperature and fuel flow rate are lower when using diesel with a 5% addition of Aeroshell 500 oil compared to Jet A with the same additive. However, the thrust is slightly higher with diesel + 5% Aeroshell 500 oil. Moreover, the specific fuel consumption is higher in regimes one and two for diesel + 5% Aeroshell 500 oil compared to Jet A + 5% Aeroshell 500 oil, while the differences are negligible in regimes three and four. At maximum operating conditions, the excess air was determined from the measured values, comparing the combustion chamber temperature with the calculated value, with a 7% error, extrapolating the results for the scenario when oil is not used. Also, during the testing campaign, the concentrations of CO and SO2 in the exhaust gas jet were measured, with higher concentrations of CO and SO2 observed for diesel compared to Jet A. Full article
Show Figures

Figure 1

13 pages, 955 KiB  
Article
Effect of Iron Mineral Transformation on Long-Term Subsurface Hydrogen Storage—Results from Geochemical Modeling
by Arkajyoti Pathak and Shikha Sharma
Fuels 2024, 5(3), 334-346; https://doi.org/10.3390/fuels5030019 - 1 Aug 2024
Viewed by 1392
Abstract
Large-scale subsurface hydrogen storage is critical for transitioning towards renewable, economically viable, and emission-free energy technologies. Although preliminary studies on geochemical interactions between different minerals, aqueous ions, and other dissolved gasses with H2 have helped partially quantify the degree of hydrogen loss [...] Read more.
Large-scale subsurface hydrogen storage is critical for transitioning towards renewable, economically viable, and emission-free energy technologies. Although preliminary studies on geochemical interactions between different minerals, aqueous ions, and other dissolved gasses with H2 have helped partially quantify the degree of hydrogen loss in the subsurface, the long-term changes in abiotic hydrogen–brine–rock interactions are still not well understood due to variable rates of mineral dissolution/precipitation and redox transformations under different conditions of reservoirs. One of the potentially understudied aspects of these complex geochemical interactions is the role of iron on the redox interactions and subsequent impact on long-term (100 years) hydrogen cycling. The theoretical modeling conducted in this study indicates that the evolution of secondary iron-bearing minerals, such as siderite and magnetite, produced after H2-induced reductive dissolution of primary Fe3+-bearing phases can result in different degrees of hydrogen loss. Low dissolved Fe2+ activity (<10−4) in the formation water can govern the transformation of secondary siderite to magnetite within 100 years, eventually accelerating the H2 consumption through reductive dissolution. Quantitative modeling demonstrates that such secondary iron mineral transformations need to be studied to understand the long-term behavior of hydrogen in storage sites. Full article
Show Figures

Figure 1

17 pages, 4432 KiB  
Article
Co-Benefits of Eichhornia Crassipes (Water Hyacinth) as Sustainable Biomass for Biofuel Production and Aquatic Ecosystem Phytoremediation
by Kamrun Nahar and Sanwar Azam Sunny
Fuels 2024, 5(3), 317-333; https://doi.org/10.3390/fuels5030018 - 23 Jul 2024
Viewed by 1044
Abstract
The water hyacinth (WH), also known as Eichhornia crassipes, is Bangladesh’s fast-growing and rapidly expanding sustainable aquatic bioenergy feedstock. The WH, as an energy crop, has been harnessed as a phytoremediation agent to purify contaminated water and produce fuel and environmentally friendly [...] Read more.
The water hyacinth (WH), also known as Eichhornia crassipes, is Bangladesh’s fast-growing and rapidly expanding sustainable aquatic bioenergy feedstock. The WH, as an energy crop, has been harnessed as a phytoremediation agent to purify contaminated water and produce fuel and environmentally friendly products. A country’s economy relies on the availability of raw materials for energy production, cleaning life-supporting abiotic resources for consumption, and the innovation of cost-effective, eco-friendly products. The present study focuses on a three-in-one nexus using the WH to purify polluted water, the (post-purification) biomass to produce clean energy fuels (biogas and bioethanol), and for the manufacture of daily-use products. The ability of the WH, an aquatic macrophyte, to act as a phytoremediator to improve the quality of eutrophic lake water in a laboratory setting was investigated. Water samples were collected from four lakes surrounding the urban community in Dhaka, Bangladesh. The potential to remove salts and solutes and improve the physio-chemical properties of water, including pH, dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDSs), turbidity, and NaCl concentration, were assessed. During the aquatic macrophyte treatment, a 100% WH survival rate was shown, with no visible toxicity symptoms observed in the biomass. The WH improved water quality after one week, as determined by a significant decrease in turbidity, EC, NaCl, and TDSs, and improved pH and DO levels. Here, we establish the WH’s proficiency in removing nutrients/solutes and improving water quality. In addition, we discuss the utilization of this invasive aquatic biomass to produce energy after remediation of water including cost-effective and eco-friendly products to incur daily life with environmental and socioeconomic benefits in Bangladesh. Full article
(This article belongs to the Special Issue Energy Crops for Biofuel Production)
Show Figures

Figure 1

20 pages, 5598 KiB  
Article
Gas Hydrate Plugging Mechanisms during Transient Shut–In/Restart Operation in Fully Dispersed Systems
by Anqi Qu, Nur Aminatulmimi Ismail, Jose G. Delgado-Linares, Ahmad A. A. Majid, Luis E. Zerpa and Carolyn A. Koh
Fuels 2024, 5(3), 297-316; https://doi.org/10.3390/fuels5030017 - 16 Jul 2024
Viewed by 1133
Abstract
Gas hydrate formation poses a significant challenge in offshore oil and gas production, particularly during cold restarts after extended shut–ins, which can lead to pipeline blockages. Although steady–state models have traditionally been used to predict hydrate formation under continuous production conditions, these models [...] Read more.
Gas hydrate formation poses a significant challenge in offshore oil and gas production, particularly during cold restarts after extended shut–ins, which can lead to pipeline blockages. Although steady–state models have traditionally been used to predict hydrate formation under continuous production conditions, these models are often inadequate for transient operations due to issues like near–zero fluid flow shear affecting the viscosity calculations of hydrate slurries. This study introduces novel conceptual models for dispersed water–in–crude oil systems specifically designed for cold restart scenarios. The models are supported by direct observations and various experimental approaches, including bottle tests, rheometer measurements, micromechanical force apparatus, and rocking cell studies, which elucidate the underlying mechanisms of hydrate formation. Additionally, this work introduces a modeling approach to represent conceptual pictures, incorporating particle settling and yield stress, to determine whether the system will plug or not upon restart. Validation is provided through transient large–scale flowloop tests, confirming the plugging mechanisms outlined. This comprehensive approach offers insights into conditions that may safely prevent or potentially lead to blockages in the fully dispersed system during field restarts, thereby enhancing the understanding and management of gas hydrate risks in offshore oil and gas operations. Full article
Show Figures

Figure 1

19 pages, 1960 KiB  
Article
Performance of An Energy Production System Consisting of Solar Collector, Biogas Dry Reforming Reactor and Solid Oxide Fuel Cell
by Akira Nishimura, Ryotaro Sato and Eric Hu
Fuels 2024, 5(3), 278-296; https://doi.org/10.3390/fuels5030016 - 10 Jul 2024
Viewed by 587
Abstract
This paper aims to study the performance of solar collectors of various sizes under different weather conditions in different Japanese cities, i.e., Kofu City, Nagoya City and Yamagata City. The heat generated by the solar collector was used to conduct a biogas dry [...] Read more.
This paper aims to study the performance of solar collectors of various sizes under different weather conditions in different Japanese cities, i.e., Kofu City, Nagoya City and Yamagata City. The heat generated by the solar collector was used to conduct a biogas dry reforming reactor for producing H2 to feed a solid oxide fuel cell (SOFC). This study revealed that the output temperature of a solar collector Tfb in April and July was higher than that in January and October irrespective of city. The optimum length of the absorber (dx) of the collector was 4 m irrespective of city. It was clarified that the Tfb in Yamagata City in January and October, i.e., winter and autumn, is lower than that in Kofu City and especially Nagoya City, which is strongly influenced by the tendency of solar intensity (I), not the velocity of the surrounding air (ua). On the other hand, the Tfb is almost the same in April and July, i.e., spring and summer, irrespective of city. The amount of produced H2 via the biogas dry reforming reactor and the power generated by the SOFC using H2 in spring and summer were higher compared to the other seasons irrespective of city. This study revealed that the highest available household number per month was 4.7, according to the investigation in this study. Full article
Show Figures

Figure 1

17 pages, 1751 KiB  
Article
Physical and Thermochemical Properties of Selected Wood Species in Nigeria: A Fuel Suitability and Pelleting Potential Assessment
by Suleiman Usman Yunusa, Satyanarayana Narra, Ebenezer Mensah, Kwasi Preko and Aminu Saleh
Fuels 2024, 5(3), 261-277; https://doi.org/10.3390/fuels5030015 - 26 Jun 2024
Cited by 1 | Viewed by 1161
Abstract
Scientific studies on the impact of wood species on solid fuel production, performance, and sustainability are grossly inadequate. The knowledge of this is imperative as users of solid fuels are increasing rapidly, especially in Africa. On this note, it becomes necessary to explore [...] Read more.
Scientific studies on the impact of wood species on solid fuel production, performance, and sustainability are grossly inadequate. The knowledge of this is imperative as users of solid fuels are increasing rapidly, especially in Africa. On this note, it becomes necessary to explore measures that will improve its efficiency and sustainability as an energy source. This study investigates some properties of selected wood species used as an energy source in Nigeria and their pelleting potential. Nine samples were characterized and assessed for suitability of pelleting following four wood pellet quality standards. The properties investigated are physical (moisture content and density) and thermochemical (calorific value, ash content, volatile matter, fixed carbon, and ultimate properties (carbon, nitrogen, hydrogen, oxygen, sulfur, arsenic, cadmium, and lead)). These were selected because they are among the most important pellet parameters contained in the quality standards. The findings revealed a net calorific value between 10.61 MJ.kg−1 for Tectona grandis and 18.44 MJ.kg−1 for Eucalyptus cam. The ash content, volatile matter, and fixed carbon contents of the samples range between 2.1 and 24.4%, 65.94 and 87.77%, and 3.51 and 18.63%, respectively. Anogeissus leiocarpus was found to be the species with the best rating score in terms of fuel properties, while Vitellaria paradoxa was the lowest. However, in terms of conformity with the four wood pellet standards, Khaya senegalensis, Parkia biglobosa, and Eucalyptus cam., having presented density, calorific value, sulfur, arsenic, cadmium, and lead within the limits of the wood pellet quality standards, were considered the best wood species in terms of fuel suitability and pelleting potential. The findings therefore suggest that not all wood species are suitable as fuel. Thus, for species that do not meet the standard wood pellet requirements, alternatives such as the use of biomass blends, additives, or process adjustments can be employed to adapt the quality to the standards or by using the fuels in improved cookstoves. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop