Seed Germination Responses to Temperature and Osmotic Stress Conditions in Brachiaria Forage Grasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brachiaria Seeds and Initial Seed Germination Potential Determination
2.2. Seed Germination Trial at Different Temperature and Osmotic Treatments
2.3. Statistical Analyses
3. Results
3.1. Brachiaria Humidicola Seed Germination
3.2. Brachiaria Brizantha Seed Germination
3.3. Brachiaria Decumbens Seed Germination
3.4. Brachiaria Nigropedata Seed Germination
3.5. Hybrid Brachiaria Seed Germination
3.6. Time to Germination in B. humidicola, B. brizantha, B. nigropedata, B. decumbens, and the Hybrid BRACHIARIA
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghahramani, A.; Howden, S.M.; del Prado, A.; Thomas, D.T.; Moore, A.D.; Ji, B.; Ates, S.A. Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review. Sustainability 2019, 11, 7224. [Google Scholar] [CrossRef]
- Engelbrecht, F.A.; Monteiro, P.M. The IPCC Assessment Report Six Working Group 1 report and southern Africa: Reasons to take action. S. Afr. J. Sci. 2021, 117, 12679. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain: A review of the evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef]
- Djikeng, A.; Rao, I.M.; Njarui, D.; Mutimura, M.; Caradus, J.; Ghimire, S.R.; Johnson, L.; Cardoso, J.A.; Ahonsi, M.; Kelemu, S. Climate-smart Brachiaria grasses for improving livestock production in East Africa. Trop. Grassl.-Forrajes Trop. 2014, 2, 38–39. [Google Scholar] [CrossRef]
- Wassie, W.A.; Tsegay, B.A.; Wolde, A.T.; Limeneh, B.A. Evaluation of morphological characteristics, yield and nutritive value of Brachiaria grass ecotypes in northwestern Ethiopia. Agric. Food Secur. 2018, 7, 89. [Google Scholar] [CrossRef]
- Guenni, O.; Martin, D.; Baruch, Z. Responses to drought of five Brachiaria species. I. Biomass production, leaf growth, root distribution, water use and forage quality. Plant Soil 2002, 243, 229–241. [Google Scholar] [CrossRef]
- Njarui, D.M.G.; Gatheru, M.; Ghimire, S.R. Brachiaria Grass for Climate Resilient and Sustainable Livestock Production in Kenya. In African Handbook of Climate Change Adaptation; Leal Filho, W., Oguge, N., Ayal, D., Adeleke, L., da Silva, I., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Njarui, D.; Mutimura, M.; Cardoso, J.A.; Johnson, L.; Gichangi, E.; Teasdale, S.; Odokonyero, K.; Caradus, J.R.; Rao, I.M.; et al. Climate-smart Brachiaria for improving livestock production in East Africa: Emerging opportunities. In Proceedings of the XXIII International Grassland Congress, New Delhi, India, 20–24 November 2015; pp. 361–370. [Google Scholar]
- Kuwi, S.O.; Kyalo, M.; Mutai, C.K.; Mwilawa, A.; Hanson, J.; Djikeng, A.; Ghimire, S.R. Genetic diversity and population structure of Urochloa grass accessions from Tanzania using simple sequence repeat (SSR) markers. Braz. J. Bot. 2018, 41, 699–709. [Google Scholar] [CrossRef]
- Maass, B.L.; Midega, C.A.; Mutimura, M.; Rahetlah, V.B.; Salgado, P.; Kabirizi, J.M.; Khan, Z.R.; Ghimire, S.R.; Rao, I.M. Homecoming of Brachiaria: Improved hybrids prove useful for African animal agriculture. East Afr. Agric. For. J. 2015, 81, 71–78. [Google Scholar] [CrossRef]
- Clémence-Aggy, N.; Fidèle, N.; Raphael, K.J.; Agbor, E.K.; Ghimire, S.R. Quality assessment of Urochloa (syn. Brachiaria) seeds produced in Cameroon. Sci. Rep. 2021, 11, 15053. [Google Scholar] [CrossRef]
- Fakhfakh, L.M.; Anjum, N.A.; Chaieb, M. Effects of temperature and water limitation on the germination of Stipagrostis ciliata seeds collected from Sidi Bouzid Governorate in Central Tunisia. J. Arid Land 2018, 10, 304–315. [Google Scholar] [CrossRef]
- Bidgolya, R.O.; Balouchi, H.; Soltani, E.; Moradi, A. Effect of temperature and water potential on Carthamus tinctorius L. seed germination: Quantification of the cardinal temperatures and modeling using hydrothermal time. Ind. Crops Prod. 2018, 113, 121–127. [Google Scholar] [CrossRef]
- Xiao, H.; Yang, H.; Monaco, T.; Song, Q.; Rong, Y. Modeling the influence of temperature and water potential on seed germination of Allium tenuissimum L. PeerJ 2020, 8, e8866. [Google Scholar] [CrossRef]
- Bewley, J.D.; Black, M. Seeds: Physiology of Development and Germination; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Studdert, G.A.; Wilhelm, W.W.; Power, J.F. Imbibition response of winter wheat to water-filled pore space. Agron. J. 1994, 86, 995–1000. [Google Scholar] [CrossRef]
- Singh, P.; Ibrahim, H.M.; Flury, M.; Schillinger, W.F.; Knappenberger, T. Critical water potentials for germination of wheat cultivars in the dryland Northwest USA. Seed Sci. Res. 2013, 23, 189–198. [Google Scholar] [CrossRef]
- Lindstrom, M.J.; Papendick, R.I.; Koehler, F.E. A model to predict winter wheat emergence as affected by soil temperature, water potential, and depth of planting. Agron. J. 1976, 68, 137–141. [Google Scholar] [CrossRef]
- Evans, C.E.; Etherington, J.R. The effects of soil water potential on seed germination of some British plants. New Phytol. 1990, 115, 539–548. [Google Scholar] [CrossRef]
- Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Patané, C.; Tringali, S. Hydrotime analysis of Ethiopian mustard (Brassica carinata A. Braun) seed germination under different temperatures. J. Agron. Crop Sci. 2011, 197, 94–102. [Google Scholar] [CrossRef]
- Patané, C.; Saita, A.; Tubeileh, A.; Cosentino, S.L.; Cavallaro, V. Modelling seed germination of unprimed and primed seeds of sweet sorghum under PEG-induced water stress through the hydrotime analysis. Acta Physiol. Plant. 2016, 38, 115. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination, 2nd ed.; Elsevier/Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Hu, X.W.; Fan, Y.; Baskin, C.C.; Baskin, J.M.; Wang, Y.R. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland. Am. J. Bot. 2015, 102, 649–660. [Google Scholar] [CrossRef]
- Muscolo, A.; Sidari, M.; Anastasi, U.; Santonoceto, C.; Maggio, A. Effect of PEG-induced drought stress on seed germination of four lentil genotypes. J. Plant Interact. 2014, 9, 354–363. [Google Scholar] [CrossRef]
- Kintl, A.; Hunady, I.; Vymyslický, T.; Ondrisková, V.; Hammerschmiedt, T.; Brtnický, M.; Elbl, J. Effect of Seed Coating and PEG-Induced Drought on the Germination Capacity of Five Clover Crops. Plants 2021, 10, 724. [Google Scholar] [CrossRef]
- Cheruiyot, D.; Midega, C.A.O.; Van den Berg, J.; Pickett, J.A.; Khan, Z.R. Genotypic Responses of Brachiaria Grass (Brachiaria spp.). Access. Drought Stress. J. Agron. 2022, 17, 136–146. [Google Scholar] [CrossRef]
- Michel, B.E.; Kaufmann, M.R. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 1973, 51, 914–916. [Google Scholar] [CrossRef]
- Qi, M.Q.; Redmann, R.E. Seed germination and seedling survival of C3 and C4 grasses under water stress. J. Arid Environ. 1993, 24, 277–285. [Google Scholar] [CrossRef]
- Bonvissuto, G.L.; Busso, C.A. Germination of grasses and shrubs under various water stress and temperature conditions. Phython Int. J. Exp. Bot. 2007, 76, 119–131. [Google Scholar]
- McDonough, W.T.; Harniss, R.O. Effects of temperature on germination in three subspecies of big sagebrush. Rangel. Ecol. Manag./J. Range Manag. Arch. 1974, 27, 204–205. [Google Scholar] [CrossRef]
- Ascough, G.D.; Erwin, J.E.; van Staden, J. Temperature-dependent seed germination in Watsonia species related to geographic distribution. S. Afr. J. Bot. 2007, 73, 650–653. [Google Scholar] [CrossRef]
- Luna, B.; Perez, B.; Torres, I.; Moreno, J.M. Effects of incubation temperature on seed germination of Mediterranean plants with different geographical distribution ranges. Folia Geobot. 2012, 47, 17–27. [Google Scholar] [CrossRef]
- Humphreys, L.R. Tropical Pastures and Fodder Crops; Longman Group Ltd.: Harlow, UK, 1978. [Google Scholar]
- Thomas, D.; Grof, B. Some pasture species for the tropical savannas of south America; III Andropogon gayanus, Brachiaria spp. and Panicum maximum. Herb. Abstr. 1986, 55, 555–565. [Google Scholar]
Osmotic Treatment | Temperature (°C) | Significance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | ||
0 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 86.8 ± 1.7 cC | 90.7 ± 1.6 bC | 81.2 ± 1.2 cC | 82.2 ± 3.7 dC | 82.0 ± 2.1 dC | 41.3 ± 5.5 dB | 0.0 ± 0.0 aA | F(8,36) = 226.8, p < 0.001 |
−0.1 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 83.4 ± 7.3 cD | 85.7 ± 2.4 bD | 80.6 ± 2.1 cD | 67.9 ± 3.7 cC | 62.1± 3.4 cC | 23.0 ± 3.1 cB | 0.0 ± 0.0 aA | F(8,36) = 111.87, p < 0.001 |
−0.3 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 53.4 ± 7.6 bC | 79.8 ± 0.8 aD | 73.3 ± 2.2 cD | 62.4 ± 4.9 cC | 14.1 ± 9.8 bB | 4.8 ± 2.4 bA | 0.0 ± 0.0 aA | F(8,36) = 56.76, p < 0.001 |
−0.5 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 29.5 ± 2.5 aB | 75.0 ± 3.4 aD | 43.8 ± 2.1 bC | 25.3 ± 2.8 bB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 212.97, p < 0.001 |
−0.7 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 12.4 ± 1.5 aB | 67.1 ± 4.7 aC | 15.2 ± 2.5 aB | 5.1 ± 2.1 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 123.2, p < 0.001 |
Significance | - | - | F(4,20) = 43.71, p < 0.001 | F(4,20) = 9.85, p < 0.001 | F(4,20) = 195.75, p < 0.001 | F(4,20) = 51.26, p < 0.001 | F(4,20) = 64.4, p < 0.001 | F(4,20) = 36.14, p < 0.001 | - |
Osmotic Treatment | Temperature (°C) | Significance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | ||
0 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 74.4 ± 4.9 dD | 85.3 ± 0.8 cD | 63.4 ± 4.8 cC | 65.3 ± 4.4 eC | 60.3 ± 2.9 dC | 1.9 ± 0.6 bB | 0.0 ± 0.0 aA | F(8,36) = 226.80, p < 0.001 |
−0.1 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 49.4 ± 3.6 cD | 66.9 ± 3.6 bF | 60.3 ± 5.8 cEF | 50.9 ± 4.9 dE | 39.4 ± 5.1 cC | 1.9 ± 1.5 bB | 0.0 ± 0.0 aA | F(8,36) = 111.87, p < 0.001 |
−0.3 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 27.8 ± 2.9 bBC | 59.7 ± 3.1 abD | 46.3 ± 4.6 bCD | 16.3 ± 4.2 cB | 7.2 ± 4.0 bA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 56.76, p < 0.001 |
−0.5 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 10.6 ± 2.9 aB | 48.4 ± 3.1 abD | 17.5 ± 2.6 aC | 5.3 ± 1.1 bB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 212.97, p < 0.001 |
−0.7 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 2.5 ± 1.1 aA | 26.3 ± 3.6 aB | 1.9 ± 0.6 aA | 2.8 ± 1.1 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 123.00, p < 0.001 |
Significance | - | - | F(4,20) = 43.71, p < 0.001 | F(4,20) = 9.85, p < 0.001 | F(4,20) = 195.75, p < 0.001 | F(4,20) = 51.26, p < 0.001 | F(4,20) = 64.40, p < 0.001 | F(4,20) = 36.1, p < 0.001 | - |
Osmotic Treatment | Temperature (°C) | Significance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | ||
0 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 90.9 ± 0.3 dE | 91.5 ± 3.5 dE | 90.2 ± 0.7 eE | 65.3 ± 0.6 eD | 37.4 ± 1.6 cC | 10.6 ± 0.8 cB | 0.0 ± 0.0 aA | F(8,36) = 961.99, p < 0.001 |
−0.1 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 85.0 ± 0.6 dE | 84.4 ± 1.9 dE | 77.1 ± 1.0 dD | 49.1 ± 1.0 dC | 13.5 ± 1.7 bB | 2.9 ± 0.6 bA | 0.0 ± 0.0 aA | F(8,36) = 1449.27, p < 0.001 |
−0.3 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 71.2 ± 0.3 cE | 71.8 ± 0.5 cE | 52.6 ± 1.7 cD | 19.4 ± 1.6 cC | 3.8 ± 0.3 aB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 1587.99, p < 0.001 |
−0.5 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 46.2 ± 1.3 bD | 41.2 ± 1.3 bD | 14.7 ± 1.0 bC | 9.7 ± 0.6 bB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 662.37, p < 0.001 |
−0.7 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 6.5 ± 1.1 aC | 7.6 ± 0.6 aC | 3.8 ± 0.6 aB | 4.1 ± 0.3 aB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 42.78, p < 0.001 |
Significance | - | - | F(4,20) = 1705, p < 0.001 | F(4,20) = 333.6, p < 0.001 | F(4,20) = 1232, p < 0.001 | F(4,20) = 832.5, p < 0.001 | F(4,20) = 22.19, p < 0.001 | F(4,20) =101.33, p < 0.001 | - |
Osmotic Treatment | Temperature (°C) | Significance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | ||
0 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 96.9 ± 1.3 eE | 95.1 ± 0.5 eE | 90.7 ± 0.61 eD | 75.0 ± 1.1 eC | 37.7 ± 0.8 eB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 4557.6, p < 0.001 |
−0.1 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 87.0 ± 0.6 dF | 84.3 ± 1.1 dE | 81.5 ± 0.5 dD | 54.9 ± 0.6 dC | 30.2 ± 0.4 dB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 6265.7, p < 0.001 |
−0.3 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 71.9 ± 0.8 cE | 71.0 ± 0.8 cE | 60.5 ± 0.5 cD | 21.0 ± 1.3 cC | 14.8 ± 0.5 cB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 2608.7, p < 0.001 |
−0.5 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 43.2 ± 1.3 bD | 43.8 ± 2.3 bD | 24.7 ± 1.1 bC | 4.3 ± 0.4 bB | 10.2 ± 0.8 bB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 344.2, p < 0.001 |
−0.7 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 9.9 ± 0.9 aB | 9.3 ± 0.4 aB | 6.5 ± 0.3 aB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 174.1, p < 0.001 |
Significance | - | - | F(4,20) = 1210.9, p < 0.001 | F(4,20) = 813.2, p < 0.001 | F(4,20) = 2914.5, p < 0.001 | F(4,20) = 1575, p < 0.001 | F(4,20) = 717.1, p < 0.001 | - | - |
Osmotic Treatment | Temperature (°C) | Significance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | ||
0 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 75.3 ± 1.8 cD | 91.0 ± 1.8 dE | 77.1 ± 1.7 eD | 32.6 ± 1.7 dC | 21.5 ± 4.3 bB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 429.55, p < 0.001 |
−0.1 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 71.5 ± 3.8 cCD | 84.0 ± 7.0 cD | 62.5 ± 1.0 dC | 17.4 ± 0.7 cB | 16.0 ± 2.3 bB | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 153.68, p < 0.001 |
−0.3 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 30.9 ± 6.1 bB | 69.4 ± 4.0 bC | 35.8 ± 2.3 cB | 6.9 ± 1.0 bA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 92.50, p < 0.001 |
−0.5 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 3.1 ± 0.7 aA | 24.0 ± 3.7 aC | 11.5 ± 0.3 bB | 2.8 ± 0.6 abA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 41.34, p < 0.001 |
−0.7 MPa | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 3.5 ± 0.4 aA | 16.3 ± 2.6 aB | 1.7 ± 0.3 aA | 1.7 ± 0.3 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | 0.0 ± 0.0 aA | F(8,36) = 34.69, p < 0.001 |
Significance | - | - | F(4,20) = 112.95, p < 0.001 | F(4,20) = 67.24, p < 0.001 | F(4,20) = 563.93, p < 0.001 | F(4,20) = 181.28, p < 0.001 | F(4,20) = 23.29, p < 0.001 | - | - |
Osmotic Treatment | Temperature (°C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | ||
B. humidicola | 0 MPa | - ± - | - ± - | 10.0 ± 0.0 | 4.0 ± 0.0 | 3.0 ± 0.0 | 3.0 ± 0.0 | 2.0 ± 0.0 | 2.0 ± 0.0 | - ± - |
−0.1 MPa | - ± - | - ± - | 10.3 ± 0.3 | 4.3 ± 0.3 | 3.0 ± 0.0 | 3.0 ± 0.0 | 2.3 ± 0.3 | 2.0 ± 0.0 | - ± - | |
−0.3 MPa | - ± - | - ± - | 12.0 ± 0.7 | 4.3± 0.3 | 3.0 ± 0.0 | 3.0 ± 0.0 | 5.0 ± 0.0 | 5.3 ± 0.7 | - ± - | |
−0.5 MPa | - ± - | - ± - | 12.5 ± 0.3 | 4.3 ± 0.3 | 3.0 ± 0.0 | 3.0 ± 0.0 | - ± - | - ± - | - ± - | |
−0.7 MPa | - ± - | - ± - | 13.0 ± 0.0 | 4.5 ± 0.3 | 4.0 ± 0.7 | 5.5 ± 1.2 | - ± - | - ± - | - ± - | |
B. brizantha | 0 MPa | - ± - | - ± - | 10.8 ± 0.3 | 5.0 ± 0.4 | 3.0 ± 0.0 | 3.0 ± 0.0 | 2.0 ± 0.0 | 9.0 ± 0.0 | - ± - |
−0.1 MPa | - ± - | - ± - | 11.8 ± 0.5 | 4.3 ± 0.3 | 3.0 ± 0.0 | 3.0 ± 0.0 | 2.0 ± 0.0 | 9.5 ± 0.5 | - ± - | |
−0.3 MPa | - ± - | - ± - | 11.8 ± 0.5 | 4.5 ± 0.5 | 3.3 ± 0.3 | 3.8 ± 0.5 | 5.0 ± 2.5 | - ± - | - ± - | |
−0.5 MPa | - ± - | - ± - | 14.0 ± 1.7 | 5.0 ± 1.0 | 3.0 ± 0.0 | 4.0 ± 0.4 | - ± - | - ± - | - ± - | |
−0.7 MPa | - ± - | - ± - | 18.3 ± 1.7 | 6.3 ± 1.3 | 6.3 ± 0.0 | 4.0 ± 0.6 | - ± - | - ± - | - ± - | |
B. decumbens | 0 MPa | - ± - | - ± - | 4.0 ± 0.0 | 3.0 ± 0.0 | 3.0 ± 0.0 | 3.0 ± 0.0 | 5.0 ± 0.0 | - ± - | - ± - |
−0.1 MPa | - ± - | - ± - | 5.0 ± 0.0 | 4.3 ± 0.3 | 4.0 ± 0.0 | 3.0 ± 0.0 | 9.0 ± 0.0 | - ± - | - ± - | |
−0.3 MPa | - ± - | - ± - | 6.0 ± 0.0 | 4.5 ± 0.5 | 6.0 ± 0.0 | 4.0 ± 0.0 | 11.0 ± 0.0 | - ± - | - ± - | |
−0.5 MPa | - ± - | - ± - | 8.0 ± 0.0 | 5.0 ± 1.0 | 12.0 ± 0.0 | 11.0 ± 0.0 | - ± - | - ± - | - ± - | |
−0.7 MPa | - ± - | - ± - | 15.0 ± 0.0 | 6.8 ± 1.6 | 13.3 ± 0.3 | 12.0 ± 0.0 | - ± - | - ± - | - ± - | |
B. nigropedata | 0 MPa | - ± - | - ± - | 4.0 ± 0.0 | 4.0 ± 0.0 | 3.0 ± 0.0 | 3.0 ± 0.0 | 3.0 ± 0.0 | - ± - | - ± - |
−0.1 MPa | - ± - | - ± - | 5.0 ± 0.0 | 4.0 ± 0.0 | 3.0 ± 0.0 | 4.0 ± 0.0 | 5.0 ± 0.0 | - ± - | - ± - | |
−0.3 MPa | - ± - | - ± - | 9.0 ± 0.0 | 6.0 ± 0.0 | 5.0 ± 0.0 | 6.0 ± 0.0 | 10.0 ± 0.0 | - ± - | - ± - | |
−0.5 MPa | - ± - | - ± - | 11.0 ± 0.0 | 9.0 ± 0.0 | 7.0 ± 0.0 | 1.0 ± 0.0 | 11.0 ± 0.0 | - ± - | - ± - | |
−0.7 MPa | - ± - | - ± - | 15.0 ± 0.0 | 12.0 ± 0.0 | 9.0 ± 0.0 | - ± - | - ± - | - ± - | - ± - | |
B. hybrid | 0 MPa | - ± - | - ± - | 12.0 ± 0.6 | 6.3 ± 0.3 | 4.5 ± 0.5 | 3.0 ± 0.0 | 2.0 ± 0.0 | - ± - | - ± - |
−0.1 MPa | - ± - | - ± - | 11.5 ± 0.5 | 6.0 ± 0.4 | 4.5 ± 0.9 | 3.0 ± 0.0 | 3.0 ± 0.0 | - ± - | - ± - | |
−0.3 MPa | - ± - | - ± - | 13.5 ± 0.5 | 6.5 ± 0.6 | 8.0 ± 0.6 | 3.3 ± 0.3 | - ± - | - ± - | - ± - | |
−0.5 MPa | - ± - | - ± - | 14.0 ± 0.0 | 9.0 ± 1.2 | 11.3 ± 0.3 | 5.8 ± 1.1 | - ± - | - ± - | - ± - | |
−0.7 MPa | - ± - | - ± - | 15.0 ± 0.0 | 8.5 ± 1.3 | 13.3 ± 0.3 | 4.3 ± 0.3 | - ± - | - ± - | - ± - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, F.L.; Leroko, J.E.; Cupido, C.F.; Samuels, I.; Ngcobo, N.; Masemola, E.L.; Manganyi-Valoyi, F.; Tjelele, T.J. Seed Germination Responses to Temperature and Osmotic Stress Conditions in Brachiaria Forage Grasses. Grasses 2024, 3, 264-273. https://doi.org/10.3390/grasses3040019
Müller FL, Leroko JE, Cupido CF, Samuels I, Ngcobo N, Masemola EL, Manganyi-Valoyi F, Tjelele TJ. Seed Germination Responses to Temperature and Osmotic Stress Conditions in Brachiaria Forage Grasses. Grasses. 2024; 3(4):264-273. https://doi.org/10.3390/grasses3040019
Chicago/Turabian StyleMüller, Francuois L., Jabulile E. Leroko, Clement F. Cupido, Igshaan Samuels, Nothando Ngcobo, Elizabeth L. Masemola, Fortune Manganyi-Valoyi, and Tlou Julius Tjelele. 2024. "Seed Germination Responses to Temperature and Osmotic Stress Conditions in Brachiaria Forage Grasses" Grasses 3, no. 4: 264-273. https://doi.org/10.3390/grasses3040019
APA StyleMüller, F. L., Leroko, J. E., Cupido, C. F., Samuels, I., Ngcobo, N., Masemola, E. L., Manganyi-Valoyi, F., & Tjelele, T. J. (2024). Seed Germination Responses to Temperature and Osmotic Stress Conditions in Brachiaria Forage Grasses. Grasses, 3(4), 264-273. https://doi.org/10.3390/grasses3040019