Achievements of Banana (Musa sp.)-Based Intercropping Systems in Improving Crop Sustainability
Abstract
:1. Introduction
2. Growing Bananas Sustainably Requires Changes in Land Use and Crop Management
3. Monoculture and Intercropping Systems
Monoculture | Reference | Intercropping | Reference |
---|---|---|---|
Single crop | [6,21,27] | Two or more crops simultaneously | [13,29] |
Large scale | [23] | Small scale | [34] |
Impact on biodiversity | [14] | Increased biodiversity | [30,31] |
Deplete soil nutrients | [22] | Stability environmental resources | [14] |
Increase susceptibility to pest and diseases | [22] | Increased pests and diseases suppression | [22] |
Reliance on chemical inputs | [14] | Less reliance on chemical inputs | [14] |
Negative environmental and agriculture consequences with greater impact from climate change | [14] | Stability agricultural production due to seasonal variability with less impact on climate change | [14,30,31] |
Higher yield per unit area | [13] | Can achieve higher yield per unit area with two or more component crops | [22] |
Specialization of economies of scale when increasing the scale of production leads to a reduction in production costs per unit | [9] | Economies of scope when the same inputs are used to produce two or more products | [9] |
4. Evaluating Intercropping Indicators
Indicator | Formula | Criteria for Decisions | Reference |
---|---|---|---|
LUE | LUE = (Yai)/(Ybm) + (Ybi)/Yam) | LUE > 1 indicates a productive advantage of intercropping; LUE = 1 no productive advantage; LUE < 1 productive disadvantage | [9,22,33,35,40] |
LER | LER = Yam/Ybm + Yai/Ybi | LER > 1 intercropping is most effective; LER < 1 intercropping has a negative effect on the yield | [22] |
ATER | ATER = [(LUEa × ta) + (LUEb × tb)]/Tbi | ATER > 1 productive advantage; ATER = 1 no productive advantage; ATER < 1 productive disadvantage | [40] |
RDC | RDC = {(Yai × Zb)/[(Yam − Yai × Za)]} × {(Ybi × Za)/[(Ybm − Ybi) × Za]} | RDC > 1 productive advantage; RDC = 1 no productive advantage; RDC < 1 productive disadvantage; RDCai > RDCbi indicates that the main crop presents strong interspecific competition | [35,40] |
A | Both crops are equally competitive when A = 0. When A is +, the culture with a + sign is dominant and the culture with a—sign is dominated | [35,40] | |
C | C = Cb + Cl Cb = (LUEa/LUEb) × (Za/Zb) Cb = (LUEb/LUEa) × (Zb/Za) | [22] | |
SPI | SPI = [(Yam/Ybm) × Ybai] + Yabi | [40] | |
IA | IA = AYat × Pat + AYbc × Pbt | IA > 0 intercropping advantage; IA ≤ 0 intercropping disadvantage | [36,40] |
GI | CPa × Pa; CPb × Pb | [40] | |
NI | NI = GI − TC | [40] | |
RR | RR = GI/TC | [40] | |
PM | PM = (NI/GI) × 100% | [40] | |
YL | YL = (WL/WI) × 100% | [40] |
5. Intercropping Benefits
5.1. Increasing or Maintaining Productivity and Profitability
5.2. Promoting the Effective Use of Natural Resources
5.3. Weed Control
5.4. Pest and Disease Reduction
5.5. Nutrient Cycling
5.6. Improving Nutritional Management
5.7. Crop Resilience
6. Intercropping Limitations and Risks
6.1. Size of the Growing Area
6.2. Decreased Crop Yield
6.3. Appropriate Choice of Component Crops
6.4. Proper Fertilization and Nutritional Status
6.5. Use of Machinery
6.6. Shade Intensity
6.7. Disposed Waste
7. Banana Planting Design
8. Banana-Based Intercropping Outcomes
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Food and Agriculture Research of United Nations. FAOSTAT: Food and Agriculture Data. 2023. Available online: https://www.fao.org/faostat/en/#home (accessed on 15 December 2023).
- FAOSTAT. Food and Agriculture Research of United Nations. Food and Agriculture Data. 2024. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 2 June 2024).
- Petsakos, A.; Prager, S.; Gonzalez, C.E.; Gama, A.C.; Sulser, T.B.; Gbegbelegbe, S.; Kikulwe, E.M.; Hareau, G. Understanding the Consequences of Changes in the Production Frontiers for Roots, Tubers, and Bananas. Glob. Food Secur. 2019, 20, 180–188. [Google Scholar] [CrossRef]
- Bolfarini, A.C.B.; Putti, F.F.; Souza, J.M.A.; Silva, M.D.S.; Ferreira, R.B.; Leonel, M.; Tecchio, M.A.; Leonel, S. Application of Phosphate Fertilization on Banana Hybrid ‘FHIA 18’ and Its Impact on Production Performance. Aust. J. Crop Sci. 2020, 14, 744–750. [Google Scholar] [CrossRef]
- Cândido, H.T.; Marzullo, Y.O.T.; Leonel, M. Green Banana Flour Technology: From Raw Material to Sensory Acceptance of Products Made with Green Banana Flour in the Brazilian Scenario. Braz. Arch. Biol. Technol. 2023, 66, e23210543. [Google Scholar] [CrossRef]
- Almeida, U.O.; Andrade Neto, R.C.; Lunz, A.M.P.; Cades, M.; Costa, D.A.; Araújo, J.M.; Teixeira Júnior, D.L.; Rodrigues, M.J.S. Production of Banana, Cultivar D’Angola, Intercropped with Açai Single in Different Planting Arrangements. Rev. Bras. Agropecuária Sustentável 2019, 9, 80–89. [Google Scholar]
- Napoleão, G.M.; Rodrigues de Jesus, P.R.; Leonel, S. Cultivar Diversification of Banana Production in Brazil. Agron. Sci. Biotechnol. 2021, 7, 1–14. [Google Scholar] [CrossRef]
- Mazzafera, P.; Favarin, J.L.; de Andrade, S.A.L. Editorial: Intercropping Systems in Sustainable Agriculture. Front. Sustain. Food Syst. 2021, 5, 634361. [Google Scholar] [CrossRef]
- Khanal, U.; Stott, K.J.; Armstrong, R.; Nuttal, J.G.; Henry, F.; Christy, B.P.; Mirchell, M.; Riffkin, P.A.; Wallace, A.J.; McCaskill, M.; et al. Intercropping—Evaluating the Advantages to Broadacre Systems. Agriculture 2021, 11, 453. [Google Scholar] [CrossRef]
- Ntamwira, J.; Ocimati, W.; Kearsley, E.; Safari, N.; Bahati, L.; Amini, D.; Lubobo, A.K.; Waswa, B.; Blomme, G. The Integration of Shade-Sensitive Annual Crops in Musa spp. Plantations in South Kivu, Democratic Republic of Congo. Agronomy 2021, 11, 368. [Google Scholar] [CrossRef]
- Alves, E.P.; Silva, M.L.; Oliveira Neto, S.N.; Barrela, T.P.; Santos, R.H.S. Economic Analysis of a Coffee-Banana System of a Family-Based Agriculture at the Atlantic Forest Zone, Brazil. Cienc. Agrotec. 2015, 39, 232–239. [Google Scholar] [CrossRef]
- Ferreira, T.M.C.; Vasconcelos, M.; Cantão, B.P.; da Silva, J.L.; Aguiar, W.K. Land Use Based on Agroforestry System: A Study at São Domingos do Capim County, Pará. Rev. Ciênc. Agroamb. 2016, 14, 93–99. [Google Scholar]
- Mousavi, S.R.; Eskandari, H. A General Overview on Intercropping and Its Advantage in Sustainable Agriculture. J. Appl. Environ. Biol. Sci. 2011, 1, 482–486. [Google Scholar]
- Nwaogu, C.; Cherubin, M.R. Integrated Agricultural Systems: The 21st Century Nature-Based Solution for Resolving the FEEEs Challenges. Adv. Agron. 2024, 185, 1–73. [Google Scholar] [CrossRef]
- Yogendra, N.D.; Keerhi, P.E.; Nazeer, M.; Jnanesha, A.C.; Verma, R.S.; Sundaresan, V. Livelihood Enhancement and Resource Use Efficiency under Lemongrass Intercropping with Food Crops. Ecol. Front. 2024, 44, 266–274. [Google Scholar] [CrossRef]
- Kishore, K.; Rupa, T.R.; Samant, D. Influence of Shade Intensity on Growth, Biomass Allocation, Yield and Quality of Pineapple in Mango-Based Intercropping System. Sci. Hortic. 2021, 278, 109868. [Google Scholar] [CrossRef]
- Kalisz, B.; Zuk-Golaszewska, K.; Radawiec, W.; Golaszewski, J. Land Use Indicators in the Context of Land Use Efficiency. Sustainability 2023, 15, 1106. [Google Scholar] [CrossRef]
- Boehmel, C.; Lewandowski, I.; Claupein, W. Comparing Annual and Perennial Energy Cropping Systems with Different Management Intensities. Agric. Syst. 2008, 96, 224–236. [Google Scholar] [CrossRef]
- Bockstaller, C.; Guichard, L.; Makowski, D.; Aveline, A.; Girardin, P.; Plantureux, S. Agri-Environmental Indicators to Assess Cropping and Farming Systems: A Review. Agron. Sustain. Dev. 2008, 28, 139–149. [Google Scholar] [CrossRef]
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining Agricultural Yields: From Tonnes to People Nourished per Hectare. Environ. Res. Lett. 2013, 8, 034015. [Google Scholar] [CrossRef]
- Marcos-Pérez, M.; Sánchez-Navarro, V.; Zornoza, R. Intercropping Systems between Broccoli and Fava Bean Can Enhance Overall Crop Production and Improve Soil Fertility. Sci. Hortic. 2023, 312, 111834. [Google Scholar] [CrossRef]
- Norhan, M.E.M.; Khashaba, D.A.S.; Abdelkader, M.A.I. Evaluation of Competitive Indices between Caraway and Garlic as Affected by Intercropping System and Potassium Fertilization Level. IOP Conf. Ser. Earth Environ. Sci. 2018, 1214, 012018. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping: A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Boult, C.; Chancellor, W. Productivity of Australian Broadacre and Dairy Industries, 2018–2019; Research Report; Australian Bureaus of Agricultural and Resource Economics and Sciences (ABARES): Canberra, Australia, 2020.
- Bybee-Finley, K.; Ryan, M.R. Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes. Agriculture 2018, 8, 80. [Google Scholar] [CrossRef]
- Dowling, A.; Sadras, V.O.; Roberts, P.; Doolette, A.; Zhou, Y.; Denton, M.D. Legume-Oilseed Intercropping in Mechanised Broadacre Agriculture—A Review. Field Crops Res. 2021, 260, e107980. [Google Scholar] [CrossRef]
- Rao, M.M.; Edmunds, J.E. A Review of Banana/Plantain Cropping Systems. Fruits 1984, 39, 79–88. [Google Scholar]
- Rodrigues Filho, V.A.; Neves, J.C.; Donato, S.L.R. Model to Estimate Nutritional and Non-Nutritional Limitations of ‘Prata-Anã’ Banana Crops Grown in Different Environments. Rev. Caatinga 2021, 34, 58–67. [Google Scholar] [CrossRef]
- Sagar, M.; Bharati, P.J.; Pilli, M.; Prasanna, K. Potential of Intercropping System in Sustaining Crop Productivity. Int. J. Agric. Environ. Biotechnol. 2019, 12, 39–45. [Google Scholar] [CrossRef]
- Bakshi, P.; Bhushan, A.; Bali, K.; Kour, K. Intercropping in Fruit Orchards: A Way Forward for Doubling the Farmer’s Income. Int. J. Agric. Sci. 2019, 11, 9274–9276. [Google Scholar]
- Olubode, O.O.; Aiyelaagbe, I.O.O.; Bodunde, J.G. Responses of ‘Sunrise-Solo’ Pawpaw, Okra and Cucumber Components of Pawpaw-Based Cropping System to Time of Intercropping. Sci. Hortic. 2012, 139, 71–78. [Google Scholar] [CrossRef]
- Mattalia, G.; Wezel, A.; Costet, P.; Jagoret, P.; Deheuvels, O.; Migliorini, P.; David, C. Contribution of Cacao Agroforestry Versus Mono-Cropping Systems for Enhanced Sustainability: A Review with a Focus on Yield. Agrofor. Syst. 2022, 96, 1077–1089. [Google Scholar] [CrossRef]
- Gendy, A.S.H.; Walid, N.S.; Dalia, N.A.S. Evaluation of Competitive Indices Between Roselle and Cowpea as Influenced by Intercropping System and Bio-Fertilization Type. Middle East J. Agric. Res. 2017, 6, 199–207. [Google Scholar]
- Nassary, E.K.; Baijukya, F.; Ndakidemi, P.A. Productivity of Intercropping with Maize and Common Bean Over Five Cropping Seasons on Smallholder Farms of Tanzania. Eur. J. Agron. 2020, 113, 125964. [Google Scholar] [CrossRef]
- Diniz, W.J.S.; Silva, T.G.F.; Ferreira, J.M.S.; Santos, D.C.; Moura, M.S.B.; Araújo, G.G.L.; Zolnier, S. Forage Cactus-Sorghum Intercropping at Different Irrigation Water Depths in the Brazilian Semiarid Region. Pesqui. Agropecu. Bras. 2017, 52, 724–733. [Google Scholar] [CrossRef]
- Silva, J.N.; Bezerra Neto, F.; Lima, J.S.S.; Rodrigues, G.S.O.; Barros Júnior, A.P.; Chaves, A.P. Combinations of Coriander and Salad Rocket Cultivars in Bicropping Systems Intercropped with Carrot Cultivars. Rev. Caatinga 2017, 30, 125–135. [Google Scholar] [CrossRef]
- Auzins, A.; Geipele, I.; Stamure, I. Measuring Land-Use Efficiency in Land Management. Adv. Mater. Res. 2013, 804, 205–210. [Google Scholar] [CrossRef]
- Lin, H.C.; Hülsbergen, K.J. A New Method for Analyzing Agricultural Land-Use Efficiency, and Its Application in Organic and Conventional Farming Systems in Southern Germany. Eur. J. Agron. 2017, 83, 15–27. [Google Scholar] [CrossRef]
- Ferreira, M.D.P.; Féres, J.G. Farm Size and Land Use Efficiency in the Brazilian Amazon. Land Use Policy 2020, 99, 104901. [Google Scholar] [CrossRef]
- Silva, J.N.; Bezerra Neto, F.; de Lima, J.S.S.; Chaves, A.P.; Nunes, R.L.C. Sustainability of Carrot-Cowpea Intercropping Systems Through Optimization of Green Manuring and Spatial Arrangements. Ciênc. Rural 2021, 51, e20190838. [Google Scholar] [CrossRef]
- Ditzler, L.; Komarek, A.M.; Chiang, T.W.; Alvarez, S.; Chatterjee, S.A.; Timler, C.; Raneri, J.E.; Carmona, N.E.; Kennedy, G.; Groot, J.C.J. A Model to Examine Farm Household Trade-Offs and Synergies with an Application to Smallholders in Vietnam. Agric. Syst. 2019, 173, 49–63. [Google Scholar] [CrossRef]
- Wortmann, C.S.; Sengooba, T.; Kyamanywa, S. Banana and Bean Intercropping: Factors Affecting Bean Yield and Land Use Efficiency. Exp. Agric. 1992, 28, 287–294. [Google Scholar] [CrossRef]
- Ocimati, W.; Groot, J.C.J.; Blomme, G.; Timler, C.J.; Remans, R.; Taulya, G.; Ntamwira, J.; Tittonell, P. A Multi-Objective Model Exploration of Banana-Canopy Management and Nutrient Input Scenarios for Optimal Banana-Legume Intercrop Performance. Agronomy 2021, 11, 311. [Google Scholar] [CrossRef]
- Van Asten, P.J.A.; Wairegi, L.W.I.; Mukasa, D.; Uringi, N.O. Agronomic and Economic Benefits of Coffee-Banana Intercropping in Uganda’s Smallholder Farming Systems. Agric. Syst. 2011, 104, 326–334. [Google Scholar] [CrossRef]
- Sonavane, S.S.; Solia, B.M.; Gonge, A.P.; Patil, S.J.; Gajjar, M.M.; Patil, R.G. Intercropping Options in Autumn Planted Banana. Trends Biosci. 2014, 7, 1927–1931. [Google Scholar]
- Alam, R.; Faruq, O.; Uddin, R.; Zonayet, M.; Syfullah, K. Intercropping of Winter Vegetables with Banana in Khagrachari Hill District of Bangladesh. J. Glob. Agric. Ecol. 2021, 11, 34–41. [Google Scholar]
- de Siqueira, H.M.; de Senna, D.S.; da Silva Araújo, J.B.; da Silva, M.W.; Turbay, E.R.M.G. Análise Econômica de Consórcios do Cafeeiro Conillon com Espécies Perenes e Florestais no Sul do Espírito Santo. Rev. Bras. Agroecol. 2020, 15, 14–25. [Google Scholar] [CrossRef]
- Manju, P.R.; Swain, S.; Pradhan, B.K.; Pushpalatha, P.B.; Patil, P. Effect of Banana (Musa spp.) Intercropping with Root and Tuber Crops. Curr. Hortic. 2021, 9, 26–30. [Google Scholar] [CrossRef]
- Teixeira, A.G.; Oliveira, F.L.; Parajara, M.C.; Moises Zucoloto, M.; Dalvi, L.P. Yacon Planting Density in Intercropping with Corn under Banana Orchard. Hortic. Bras. 2020, 38, 83–88. [Google Scholar] [CrossRef]
- Dissanayake, S.M.; Palihakkara, I.R. Effects of Intercropping of Immature Oil Palm (Elaeis guineensis) with Banana, Ginger, and Turmeric in the Galle District, Sri Lanka. Environ. Qual. Manag. 2024, 33, 31–36. [Google Scholar] [CrossRef]
- Perdoná, M.J.; Soratto, R.P. Higher Yield and Economic Benefits are Achieved in the Macadamia Crop by Irrigation and Intercropping with Coffee. Sci. Hortic. 2015, 185, 59–67. [Google Scholar] [CrossRef]
- Ouma, G. Intercropping and Its Application to Banana Production in East Africa: A Review. J. Plant Breed. Crop Sci. 2009, 1, 013–015. [Google Scholar]
- Srivastava, A.K.; Huchche, A.D.; Ram, L.; Singh, S. Yield Prediction in Intercropped Versus Monocropped Citrus Orchards. Sci. Hortic. 2007, 114, 67–70. [Google Scholar] [CrossRef]
- Bellamy, A.S. Banana Production Systems: Identification of Alternative Systems for More Sustainable Production. Ambio 2013, 42, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Ashish, K.; Jnanesha, A.C.; Lal, R.K.; Dubey, B.K. Intercropping and Mixed Herb Distillation for High-Quality Oil Yield Using Lemon-Scented Basil (Ocimum africanum Lur.) cv. CIM-Jyoti and Lemongrass (Cymbopogon flexuous (Nees ex Steud.) cv. Krishna. Acta Ecol. Sin. 2021, 42, 269–273. [Google Scholar] [CrossRef]
- Oliveira, S.G.; Bonfim, F.P.G.; Alves, L.F.; Marques, I.B.; Araújo, E.O. Alelopatia de capim-cidreira na germinação, vigor de sementes e no desenvolvimento inicial do tomate-cereja. Cad. Ciênc. Agrár. 2018, 10, 7–12. [Google Scholar]
- De Oliveira, C.A.A.; Santos, J.S. Active Compounds of Lemon Grass (Cymbopogon citratus): A Review. Res. Soc. Dev. 2021, 10, e26310122081. [Google Scholar] [CrossRef]
- Mukarram, M.; Choudhary, S.; Khan, M.A.; Poltronieri, P.; Khan, M.M.A.; Ali, J.; Kurjak, D.; Shahid, M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants 2021, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, L.; Zhang, S.; Miao, Y.; Zhang, Y.; Li, Z.; Zhao, J.; Zhang, J.; Qin, X.; Yao, Y. Plant Interaction Patterns Shape the Soil Microbial Community and Nutrient Cycling in Different Intercropping Scenarios of Aromatic Plant Species. Front. Microbiol. 2022, 13, 888789. [Google Scholar] [CrossRef]
- Rodrigues de Jesus, P.R.; Leonel, S.; Leonel, M.; Cândido, H.T.; Molha, N.Z.; Domiciano, V.M.; Ouros, L.F.; Tecchio, M.A. Performance and Leaf Nutritional Content of Banana Cultivars Intercropped with Lemongrass. Rev. Caatinga 2024, 37, e12448. [Google Scholar] [CrossRef]
- Spinoni, J.; Marinho Ferreira Barbosa, P.; Bucchignani, E.; Cassano, J.; Cavazos, T.; Christensen, J.; Christensen, O.; Coppola, E.; Evans, J.; Geyer, B.; et al. Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. J. Clim. 2020, 33, 3635–3661. [Google Scholar] [CrossRef]
- Tilman, D. Benefits of Intensive Agricultural Intercropping. Nat. Plants 2020, 6, 604–605. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple Benefits of Legumes for Agriculture Sustainability: An Overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Andrade Neto, R.C.; Almeida, U.O.; Lunz, A.M.P.; Oliveira, T.K.; Nogueira, S.R.; Oliveira, J.R. Características Agronômicas de Bananeira Terra, cv. D’Angola, em Consórcio com Açaizeiro (Euterpe precatoria Mart.). In Boletim de Pesquisa; Embrapa Acre: Rio Branco, Brazil, 2015; Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/136874/1/25853.pdf (accessed on 19 June 2024).
- Muliele, M.T.; Bielders, C.L.; Van Asten, P.J.A. Short- and Medium-Term Impact of Manual Tillage and No-Tillage with Mulching on Banana Roots and Yields in Banana-Bean Intercropping Systems in the East African Highlands. Field Crops Res. 2015, 171, 1–10. [Google Scholar] [CrossRef]
- Concenço, G.; Motta, I.S.; Correia, I.V.T.; Santos, S.A.; Mariani, A.; Marques, R.F.; Palharini, W.G.; Alves, M.E.S. Infestation of Weed Species in Monocrop Coffee or Intercropped with Banana, Under Agroecological System. Planta Daninha 2014, 32, 665–674. [Google Scholar] [CrossRef]
- Seenivasan, N. Management of Radopholus similis and Helicotylenchus multicinctus in ratoon banana grown under high density planting systems. Int. J. Fruit Sci. 2017, 17, 41–62. [Google Scholar] [CrossRef]
- Ren, X.; Zhou, Z.; Liu, M.; Shen, Z.; Wang, B.; Jousset, A.; Geisen, S.; Ravanbakhsh, M.; Kowalchuk, G.A.; Li, R.; et al. Intercropping with Trifolium repens contributes disease suppression of banana Fusarium wilt by reshaping soil protistan communities. Agric. Ecosyst. Environ. 2024, 361, 108797. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Xiao, S.; Feng, D.; Deng, Y.; Xuan, W. Effects of sweet potato intercropping in banana orchard on soil microbial population diversity. Ann. Microbiol. 2022, 72, 46. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Rahman, M.H.; Haqu, M.E.; Ekalar, M.H.; Naber, S.L. Banana-based intercropping system in North-west part of Bangladesh. J. Agron. 2006, 5, 228–231. [Google Scholar] [CrossRef]
- Dassou, A.G.; Carval, D.; Dépgny, S.; Fansi, G.; Tixier, P. Ant abundance and Cosmopolites sordidus damage in plantain fields as affected by intercropping. Biol. Control 2015, 81, 51–57. [Google Scholar] [CrossRef]
- Butler, D. Fungus threatens top banana. Nature 2013, 504, 195–196. [Google Scholar] [CrossRef]
- Shen, Z.; Xue, C.; Penton, C.R.; Thomashow, L.S.; Zhang, N.; Wang, B.; Ruan, Y.; Li, R.; Shen, Q. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. Soil Biol. Biochem. 2019, 128, 164–174. [Google Scholar] [CrossRef]
- Hong, S.; Jv, H.; Lu, M.; Wang, B.; Zhao, Y.; Ruan, Y. Significant decline in banana Fusarium wilt disease is associated with soil microbiome reconstruction under chilli-pepper-banana rotation. Eur. J. Soil Biol. 2020, 97, 103154. [Google Scholar] [CrossRef]
- Zhu, S.; Morel, J.B. Molecular mechanisms underlying microbial disease control in intercropping. Mol. Plant-Microbe Interact. 2019, 32, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, T.; He, C.; Cheng, K.; Zeng, R.; Song, Y. Control of Panama disease of banana by intercropping with Chinese chive (Allium tuberosum Rottler): Cultivar differences. BMC Plant Biol. 2020, 20, 432. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Duan, Y.; Liu, X.; Sun, M.; Wang, Y.; Liu, M.; Zhu, Z.; Shen, Z.; Gao, W.; Wang, B.; et al. Reduction of banana Fusarium wilt associated with soil microbiome reconstruction through green manure intercropping. Agric. Ecosyst. Environ. 2022, 337, 108065. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, Y.; Yin, J.; Li, D.; Wang, B.; Zhang, K.; Zheng, X.; Hong, Y.; Zhang, H.; Xie, C.; et al. Productivity and quality of banana in response to chemical fertilizer reduction with bio-organic fertilizer: Insight into soil properties and microbial ecology. Agric. Ecosyst. Environ. 2021, 322, 107659. [Google Scholar] [CrossRef]
- Geisen, S.; Mitchell, E.A.D.; Adl, S.; Bonkowski, M.; Dunthorn, M.; Ekelund, F.; Fernández, L.D.; Jousset, A.; Krashevska, V.; Singer, D.; et al. Soil protists: A fertile frontier in soil biology research. FEMS Microbiol. Rev. 2018, 42, 293–323. [Google Scholar] [CrossRef]
- Amacker, N.; Gao, Z.; Hu, J.; Jousset, A.L.C.; Kowalchuk, G.A.; Geisen, S. Protist feeding patterns and growth rate are related to their predatory impact on soil bacterial communities. FEMS Microbiol. Ecol. 2022, 98, fiac057. [Google Scholar] [CrossRef]
- Gao, Z.; Karlsson, I.; Geisen, S.; Kowalchuk, G.; Jousset, A. Protists: Puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019, 24, 165–176. [Google Scholar] [CrossRef]
- Guo, S.; Tao, C.; Jousset, A.; Xiong, W.; Wang, Z.; Shen, Z.; Wang, B.; Xu, Z.; Gao, Z.; Liu, S.; et al. Trophic interactions between predatory protists and pathogen-suppressive bacteria impact plant health. ISME J. 2022, 16, 1932–1943. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Scow, K.; Brennan, E.; Vitousek, P. Long-term effects of compost and cover crops on soil phosphorus in two California agroecosystems. Soil Sci. Soc. Am. J. 2015, 79, 688–697. [Google Scholar] [CrossRef]
- Turrini, A.; Sbrana, C.; Avio, L.; Njeru, E.M.; Bocci, G.; Barberi, P.; Giovannetti, M. Changes in the composition of native root arbuscular mycorrhizal fungal communities during a short-term cover crop-maize succession. Biol. Fertil. Soils 2016, 52, 643–653. [Google Scholar] [CrossRef]
- Ye, X.Q.; Yan, Y.N.; Wu, M.; Yu, F.H. High capacity of nutrient accumulation by invasive Solidago canadensis in a coastal grassland. Front. Plant Sci. 2019, 10, 575. [Google Scholar] [CrossRef] [PubMed]
- Akinola, S.A.; Babalola, O.O. The fungal and archaeal community within plant rhizosphere: A review on their contribution to crop safety. J. Plant Nutr. 2021, 44, 600–618. [Google Scholar] [CrossRef]
- Leonel, S.; Bolfarini, A.C.B.; Souza, J.M.A.; Leonel, M.; Ferreira, R.B.; Putti, F.F.; Tecchio, M.A. Agronomic performance of Banana ‘FHIA 18’ in response to phosphate fertilization. Agron. J. 2020, 112, 2033–2046. [Google Scholar] [CrossRef]
- Maia, A.H.; Rebelatto, B.F.; Reis, D.S.; Trento, M.B.R.; dos Santos Ferreira, L. Crescimento Inicial de Cultivares de Bananeira Consorciadas com Adubos Verdes/Initial Growth of Banana Cultivars Consorted with Green Manures. Braz. J. Dev. 2020, 6, 20245–20261. [Google Scholar] [CrossRef]
- Musongora, M.; Karanja, N.; Kimenju, W.; Kamau, S. Spatio-Temporal Change of Selected Soil Physico-Chemical Properties in Grevillea-Banana Agroforestry Systems. Heliyon 2023, 9, e16121. [Google Scholar] [CrossRef]
- Glaze-Corcoran, S.; Hashemi, M.; Sadeghpour, A.; Jahanzad, E.; Afshar, R.K.; Liu, X.; Hebert, S. Understanding Intercropping to Improve Agricultural Resiliency and Environmental Sustainability. Adv. Agron. 2020, 162, 199–256. [Google Scholar] [CrossRef]
- Huss, C.; Holmes, K.D.; Blubaugh, C. Benefits and Risks of Intercropping for Crop Resilience and Pest Management. J. Econ. Entomol. 2022, 115, 1350–1362. [Google Scholar] [CrossRef]
- Abele, S.; Twine, E.; Legg, C. Food Security in Eastern Africa and the Great Lakes; IITA: Ibadan, Nigeria, 2007. [Google Scholar]
- Blomme, G.; Ocimati, W.; Groot, J.; Ntamwira, J.; Bahati, L.; Kantungeko, D.; Remans, R.; Tittonell, P. Agroecological Integration of Shade and Drought Tolerant Food/Feed Crops for Year-Round Productivity in Banana-Based Systems Under Rainfed Conditions in Central Africa. Acta Hortic. 2018, 1196, 41–54. [Google Scholar] [CrossRef]
- Ocimati, W.; Ntamwira, J.; Groot, J.C.J.; Taulya, G.; Tittonell, P.; Dhed’a, P.; van Astens, P.; Vanlauwe, B.; Ruhigwa, B.; Blomme, G. Banana Leaf Pruning to Facilitate Annual Legume Intercropping as an Intensification Strategy in the East African Highlands. Eur. J. Agron. 2019, 110, 125923. [Google Scholar] [CrossRef]
- Rodrigo, V.H.L.; Stirling, C.M.; Teklehaimanot, Z.; Nugawela, A. The Effect of Planting Density on Growth and Development of Component Crops in Rubber/Banana Intercropping Systems. Field Crops Res. 1997, 52, 95–108. [Google Scholar] [CrossRef]
- Silva, D.M.N.; Heitor, L.C.; Candido, A.O.; Moraes, B.S.A.; Souza, G.S.; Araújo, J.B.S.; Mendonça, E.S. Carbon Balance in Organic Conilon Coffee Intercropped with Tree Species and Banana. Rev. Árvore 2020, 44, e4421. [Google Scholar] [CrossRef]
- Bebber, D.P. The long road to a sustainable banana trade. Plants People Planet 2023, 5, 662–671. [Google Scholar] [CrossRef]
Component Crop | Outcomes | Reference |
---|---|---|
Green Manures: Cajanus cajans and Crotalaria juncea | Greater banana growth | [88] |
Coffee (Coffea arabica) | Increase economic viability; advantageous for NI, better LUE efficiency, increase the revenue, high quality bananas and weed supression | [11,44,47,48,54,66] |
Bean (Phaseolus vulgaris) | Bananas appeared more competitive, low banana productivity and the need for investment in external inputs | [42,43,65] |
Climbing beans (Phaseolus coccineus) and soya (Glycine max) | Reduced banana growth and yield | [43] |
Onion (Allium cepa) | Highest net revenue | [45] |
Sweet goud (Momordica cochinchinensis), Bitter gourd (Momordica charantia), red amaranth (Amaranthus cruentus) and radish (Raphanus sativus) | Lower yield and economic analysis with maximum cost-benefit ratio | [46] |
Yacon (Smallanthus sonchifolius) | Higher GI and optimizes the use of the area | [49] |
Aromatic species | Additional income, reduce costs and environmental damage | [55,56,59] |
Lemongrass (Cymbopogon citratus) | Entry into consumer markets, similar performance compared with monocropping, reduced weed control and without the need to select specific fertilizers for lemongrass | [30,60] |
Sweet potato (Ipomoea batatas) | Regulating the structure and compositions and improving the abundance and diversity of soil microbial population | [69] |
Millet (Panicum miliaceum) | Lower number of banana weevil | [52,70] |
Leguminosae (Canavalia muzzina and Tephrosia vogelli) | Repellent or insecticidal properties | [52] |
Maize (Zea mays), taro (Xanthosoma sagittifolium) and gourd (Lagenaria siceraria) | Alter the structure of ant community which contributes to the control of weevil (Cosmopolites sordidus) | [71] |
Chinese chives (Allium tuberosum) | Potential to reduce Fusarium wilt disease | [76] |
Leguminosae White clover (Trifolium repens) | Reduced the incidence of Fusarium wilt disease | [68,77,78] |
Oil palm (Elaeis gineensis) | Sustainable LUE and revenue | [50] |
Grevillea (Grevillea robusta) | Low soil fertility continually restricts production | [89] |
Rubber (Hevea brasiliensis) | Increase in the growth of rubber | [95] |
Cocoa (Cocos nucifera) | Necessity to reduce the density of banana plantation | [43] |
Agroforestry systems | Optimizzing LUE, diversifying production and increasing GI | [6] |
FARMdesign model | Disparity in agroecological practices and socioeconomic constraints | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonel, S.; Leonel, M.; Jesus, P.R.R.d.; Tecchio, M.A.; Silva, M.d.S.; Cândido, H.T.; Molha, N.Z.; Ouros, L.F.d. Achievements of Banana (Musa sp.)-Based Intercropping Systems in Improving Crop Sustainability. Horticulturae 2024, 10, 956. https://doi.org/10.3390/horticulturae10090956
Leonel S, Leonel M, Jesus PRRd, Tecchio MA, Silva MdS, Cândido HT, Molha NZ, Ouros LFd. Achievements of Banana (Musa sp.)-Based Intercropping Systems in Improving Crop Sustainability. Horticulturae. 2024; 10(9):956. https://doi.org/10.3390/horticulturae10090956
Chicago/Turabian StyleLeonel, Sarita, Magali Leonel, Paulo Ricardo Rodrigues de Jesus, Marco Antonio Tecchio, Marcelo de Souza Silva, Hebert Teixeira Cândido, Nicholas Zanette Molha, and Lucas Felipe dos Ouros. 2024. "Achievements of Banana (Musa sp.)-Based Intercropping Systems in Improving Crop Sustainability" Horticulturae 10, no. 9: 956. https://doi.org/10.3390/horticulturae10090956