Mining Eco-Efficiency Measurement and Driving Factors Identification Based on Meta-US-SBM in Guangxi Province, China
Abstract
:1. Introduction
2. Methodology and Data Source
2.1. Study Site
2.2. Definition of the Composite Mining Eco-Efficiency
2.3. Meta-US-SBM to Measure Mining Eco-Efficiency
2.4. GeoDetector
2.5. Tobit Model
2.6. Variables and Data Source
3. Results and Discussion
3.1. Mining Eco-Efficiency and Spatial Pattern
3.2. Analysis of the Driving Factors of the Mining Eco-Efficiency
3.2.1. Analysis of Internal Factors of Eco-Efficiency of the Mining Industry: GeoDetector
3.2.2. Analysis of External Factors of Mining Eco-Efficiency: Panel Tobit Model
4. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, L.; Tang, K.; Wang, Z.; An, H.; Fang, W. Regional eco-efficiency and pollutants’ marginal abatement costs in China: A parametric approach. J. Clean. Prod. 2017, 167, 619–629. [Google Scholar] [CrossRef]
- MEPC (Ministry of Environmental Protection of China). The Analysis Report of the Economic Impact of Environmental Protection in the New Normal; MEPC: Beijing, China, 2015. [Google Scholar]
- Burton, I. Report on reports: Our common future: The world commission on environment and development. Environ. Sci. Policy Sustain. Dev. 1987, 29, 25–29. [Google Scholar] [CrossRef]
- Mickwitz, P.; Melanen, M.; Rosenström, U.; Seppälä, J. Regional eco-efficiency indicators—A participatory approach. J. Clean. Prod. 2006, 14, 1603–1611. [Google Scholar] [CrossRef]
- Freeman, A.M., III; Haveman, R.H.; Kneese, A.V. Economics of Environmental Policy; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1973. [Google Scholar]
- Schaltegger, S.; Sturm, A. Ecological Rationality, (in German: “Ökologische Rationalität”); Die Unternehmung, No. 4; John Wiley & Sons: London, UK, 1990; pp. 273–290. [Google Scholar]
- Robert Baum, J.; Wally, S. Strategic decision speed and firm performance. Strateg. Manag. J. 2003, 24, 1107–1129. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development-OECD. Maintaining Prosperity in an Ageing Society, Paris. 1998. Available online: https://www.oecd.org/daf/fin/privatepensions/maintainingprosperityinanageingsociety.htm (accessed on 14 May 2021).
- Picazo-Tadeo, A.J.; Gómez-Limón, J.A.; Reig-Martínez, E. Assessing farming eco-efficiency: A data envelopment analysis approach. J. Environ. Manag. 2011, 92, 1154–1164. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Robaina, M. The economic and environmental efficiency assessment in EU cross-country: Evidence from DEA and quantile regression approach. Ecol. Indic. 2017, 78, 85–97. [Google Scholar] [CrossRef]
- Kharel, G.P.; Charmondusit, K. Eco-efficiency evaluation of iron rod industry in Nepal. J. Clean. Prod. 2008, 16, 1379–1387. [Google Scholar] [CrossRef]
- Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [Google Scholar] [CrossRef]
- Kuosmanen, T.; Kortelainen, M. Measuring eco-efficiency of production with data envelopment analysis. J. Ind. Ecol. 2005, 9, 59–72. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, F.R.; An, P.L.; Dong, M.L.; Wang, Z.Y.; Zhao, T. Industrial land-use efficiency and planning in Shunyi, Beijing. Landsc. Urban Plan. 2008, 85, 40–48. [Google Scholar] [CrossRef]
- Zuo, Z.; Guo, H.; Cheng, J.; Li, S. Ecological Security Assessment of the G20 and its Drivers: EF-Path-STIRPAT Modeling. Nat. Resour. Res. 2020, 29, 4161–4174. [Google Scholar] [CrossRef]
- Beames, A.; Broekx, S.; Heijungs, R.; Lookman, R.; Boonen, K.; Van Geert, Y.; Dendoncker, K.; Seuntjens, P. Accounting for land-use efficiency and temporal variations between brownfield remediation alternatives in life-cycle assessment. J. Clean. Prod. 2015, 101, 109–117. [Google Scholar] [CrossRef]
- Fan, Y.; Bai, B.; Qiao, Q.; Kang, P.; Zhang, Y.; Guo, J. Study on eco-efficiency of industrial parks in China based on data envelopment analysis. J. Environ. Manag. 2017, 192, 107–115. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity changes in Swedish pharamacies 1980–1989, A non-parametric Malmquist approach. J. Product. Anal. 1992, 3, 85–101. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Calvet, R.; Conesa, D.; Gómez-Calvet, A.R.; Tortosa-Ausina, E. On the dynamics of eco-efficiency performance in the European Union. Comput. Oper. Res. 2016, 66, 336–350. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Chang, Y.; Zhang, L. Industrial eco-efficiency in China: A provincial quantification using three-stage data envelopment analysis. J. Clean. Prod. 2017, 143, 238–249. [Google Scholar] [CrossRef]
- Côté, R.; Booth, A.; Louis, B. Eco-efficiency and SMEs in Nova Scotia, Canada. J. Clean. Prod. 2006, 14, 542–550. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, L.; Wang, Y. Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years. Land Use Policy 2020, 97, 104794. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, J.; Lu, L.; Tang, G.; Yan, B.; Xiao, X.; Han, Y. Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan National Park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C. Slacks-based data envelopment analysis for eco-efficiency assessment in the Australian construction industry. Constr. Manag. Econ. 2017, 35, 693–706. [Google Scholar] [CrossRef]
- Li, L.; Hu, J. Ecological total-factor energy efficiency of regions in China. Energy Policy 2012, 46, 216–224. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Hansson, L.; Zhang, K.; Wang, R. Implementing stricter environmental regulation to enhance eco-efficiency and sustainability: A case study of Shandong Province’s pulp and paper industry, China. J. Clean. Prod. 2011, 19, 303–310. [Google Scholar] [CrossRef]
- Shao, L.; Yu, X.; Feng, C. Evaluating the eco-efficiency of China’s industrial sectors: A two-stage network data envelopment analysis. J. Environ. Manag. 2019, 247, 551–560. [Google Scholar] [CrossRef]
- Huang, J.; Xia, J.; Yu, Y.; Zhang, N. Composite eco-efficiency indicators for China based on data envelopment analysis. Ecol. Indic. 2018, 85, 674–697. [Google Scholar] [CrossRef]
- Wu, Y.; Ke, Y.; Xu, C.; Xiao, X.; Hu, Y. Eco-efficiency measurement of coal-fired power plants in China using super efficiency data envelopment analysis. Sustain. Cities Soc. 2018, 36, 157–168. [Google Scholar] [CrossRef]
- Yu, Y.; Peng, C.; Li, Y. Do neighboring prefectures matter in promoting eco-efficiency? Empirical evidence from China. Technol. Forecast. Soc. Chang. 2019, 144, 456–465. [Google Scholar] [CrossRef]
- Masuda, K. Measuring eco-efficiency of wheat production in Japan: A combined application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 126, 373–381. [Google Scholar] [CrossRef]
- Hu, W.; Guo, Y.; Tian, J.; Chen, L. Eco-efficiency of centralized wastewater treatment plants in industrial parks: A slack-based data envelopment analysis. Resour. Conserv. Recycl. 2019, 141, 176–186. [Google Scholar] [CrossRef]
- Liu, X.; Chu, J.; Yin, P.; Sun, J. DEA cross-efficiency evaluation considering undesirable output and ranking priority: A case study of eco-efficiency analysis of coal-fired power plants. J. Clean. Prod. 2017, 142, 877–885. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, Y.; Jiao, L.; Shuai, C.; Zhang, H. Eco-efficiency, eco-technology innovation and eco-well-being performance to improve global sustainable development. Environ. Impact Assess. Rev. 2021, 89, 106580. [Google Scholar] [CrossRef]
- Robaina-Alves, M.; Moutinho, V.; Macedo, P. A new frontier approach to model the eco-efficiency in European countries. J. Clean. Prod. 2015, 103, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhang, X. Assessing regional eco-efficiency from the perspective of resource, environmental and economic performance in China: A bootstrapping approach in global data envelopment analysis. J. Clean. Prod. 2018, 173, 100–111. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Hu, J.; Xia, X.H. Dynamics of green productivity growth for major Chinese urban agglomerations. Appl. Energy 2017, 196, 170–179. [Google Scholar] [CrossRef]
- Deng, K.; Hu, Z. Discussion on sustainable development of mineral resources in Nandan, Guangxi. Miner. Resour. Geol. 2010, 24, 552–556. (In Chinese) [Google Scholar] [CrossRef]
- Li, F. Research on Guangxi Mining Circular Economy Development Model. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2005. (In Chinese). [Google Scholar]
- Mulwa, R.; Emrouznejad, A.; Muhammad, L. Economic efficiency of smallholder maize producers in Western Kenya: A DEA meta-frontier analysis. Int. J. Oper. Res. 2009, 4, 250–267. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, J.; Luo, N. Can more environmental information disclosure lead to higher eco-efficiency? Evidence from China. Sustainability 2018, 10, 528. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, S. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Du, L.; Hanley, A.; Zhang, N. Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis. Resour. Energy Econ. 2016, 43, 14–32. [Google Scholar] [CrossRef]
- Zhang, N.; Kong, F.; Yu, Y. Measuring ecological total-factor energy efficiency incorporating regional heterogeneities in China. Ecol. Indic. 2015, 51, 165–172. [Google Scholar] [CrossRef]
- Chauhan, S.S. Mining, development and environment: A case study of Bijolia mining area in Rajasthan, India. J. Hum. Ecol. 2010, 31, 65–72. [Google Scholar] [CrossRef]
- Honma, S.; Hu, J. Total-factor energy efficiency of regions in Japan. Energy Policy 2008, 36, 821–833. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, W.; Samat, A.; Abuduwaili, J.; Ge, Y. Quantifying the influences of land surface parameters on LST variations based on GeoDetector model in Syr Darya Basin, Central Asia. J. Arid Environ. 2021, 186, 104415. [Google Scholar] [CrossRef]
- Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of relationships for limited dependent variables. Econom. J. Econom. Soc. 1958, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Villavicencio, G.; Didonet, S.R.; Dodd, A. Influencing factors of eco-efficient urban waste management: Evidence from Spanish municipalities. J. Clean. Prod. 2017, 164, 1486–1496. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Wang, S.; Liu, Y. The temporal and spatial differentiation of urban ecological efficiency in the Yangtze River Economic Zone and its driving factors. China Popul. Resour. Environ. 2020, 30, 121–127. (In Chinese) [Google Scholar]
- He, J. What is the role of openness for China’s aggregate industrial SO2 emission? A structural analysis based on the Divisia decomposition method. Ecol. Econ. 2010, 69, 868–886. [Google Scholar] [CrossRef]
- Fang, C.; Cheng, J.; Zhu, Y.; Chen, J.; Peng, X. Green total factor productivity of extractive industries in China: An explanation from technology heterogeneity. Resour. Policy 2021, 70, 101933. [Google Scholar] [CrossRef]
- Gao, J.; Jefferson, G.H. Science and technology take-off in China? Sources of rising R&D intensity. Asia Pac. Bus. Rev. 2007, 13, 357–371. [Google Scholar]
- Du, W.; Li, M. Assessing the impact of environmental regulation on pollution abatement and collaborative emissions reduction: Micro-evidence from Chinese industrial enterprises. Environ. Impact Assess. Rev. 2020, 82, 106382. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, H.Q.; Liu, S.S.; Zhang, H.B. Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod. 2019, 211, 61–69. [Google Scholar] [CrossRef]
- Ding, Q. Consolidate the statistical foundation of mineral reserves to ensure the authenticity and reliability of resources. China Natural Resources News, 18 August 2020; (In Chinese). [Google Scholar] [CrossRef]
- Dai, Q.; Wei, Y.; Ning, Y. Analysis on the Spatiotemporal Evolution of Economic Disparities in Underdeveloped Provinces. Econ. Geogr. 2015, 35, 14–21. (In Chinese) [Google Scholar]
- Kong, Y.; Liu, J. Sustainable port cities with coupling coordination and environmental efficiency. Ocean Coast. Manag. 2021, 205, 105534. [Google Scholar] [CrossRef]
- Huang, Z. Research on the Development of Guangxi’s New Urbanization. Ph.D. Thesis, Wuhan University, Wuhan, China, 2016. (In Chinese). [Google Scholar]
- Wang, J. Guangxi Beibu Gulf Port Logistics and Regional Economic Association Effects and Their Synergy Strategies—Based on the Comparative Analysis of the Differences in Economic Development of Three Coastal Cities. Econ. Res. Ref. 2012, 41, 48–52. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.; Sun, X.; Song, M. Environmental regulation, resource misallocation, and ecological efficiency. Emerg. Mark. Financ. Trade 2021, 57, 410–429. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of a North American free trade agreement. Natl. Bur. Econ. Res. 1991. [Google Scholar] [CrossRef]
- Chen, N.; Xu, L.; Chen, Z. Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models. Energy 2017, 134, 659–671. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, Y.; Liu, M.; Zhou, B. Resource-based cities’ industry collaborative agglomeration, marketization degree and environmental pollution. Ind. Econ. Res. 2020, 6, 15–27. (In Chinese) [Google Scholar] [CrossRef]
- Wang, R.; Xia, B.; Dong, S.; Li, Y.; Li, Z.; Ba, D.; Zhang, W. Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China. Sustainability 2021, 13, 280. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, C. Dynamic evolution and influencing factors of industrial green total factor energy efficiency in China. Alex. Eng. J. 2021, 60, 1929–1937. [Google Scholar] [CrossRef]
- Schultz, T.W. Investment in human capital. Am. Econ. Rev. 1961, 51, 1–17. [Google Scholar]
Reference | Research Object | Inputs | Desirable Outputs | Undesirable Outputs | Methodology |
---|---|---|---|---|---|
Zhang et al. [12] | Regional industrial systems’ eco-efficiency in China | Water resource Raw mining resource Energy | Value-added to industry | COD discharge Nitrogen discharge Sulfur dioxide emission Soot emission Dust emission Industrial solid wastes produced | CCR BCC |
Shao et al. [29] | Eco-efficiency of China’s industrial sectors | Energy Labor Capital | Industrial value-added | CO2 Solid waste COD generation NH3-H generation SO2 generation Smoke dust generation | Two-stage DEA |
Huang et al. [30] | Composite eco-efficiency in 30 provinces | Energy Labor Capital Water Land | GDP | Pollution index | Meta-US-SBM |
Zhang et al. [22] | Industrial eco-efficiency in China | Capital, Labor Energy Environmental emissions | The gross industrial output value | -- | Three-stage DEA |
Wu et al. [31] | Eco-efficiency of coal-fired power plants in China | Water Oil Auxiliary power Coal Installed capacity Capital | Electricity generated Equivalent available coefficient | CO2 emissions Dust emission Concentration NOx emission concentration SO2 emission concentration | Super efficiency DEA |
Yu et al. [32] | Eco-efficiency of 191 prefectural-level cities in China | Energy Labor Capital Land | GDP | Environmental pollution index | Meta-US-SBM |
Masuda [33] | Eco-efficiency of wheat production in Japan | Global warming potential Aquatic eutrophication potential | Wheat yield | -- | SBM-Window-DEA |
Hu et al. [34] | Eco-efficiency of centralized wastewater treatment plants in 128 Chinese industrial parks | Investment Operating cost Energy Relative capacity load Wastewater | COD removal efficiency TN removal efficiency NH3-N removal efficiency TP removal efficiency | -- | SBM-DEA |
Hu and Liu [26] | Eco-efficiency in the Australian construction industry | Number of employed persons Value of construction work done | Gross value added | CO2 equivalent | SBM-DEA |
Liu et al. [35] | Eco-efficiency of coal-fired power plants in China | Generator capacity Operation expenditure | Net generation | -- | CCR Extended CCR |
Zhang et al. [36] | Eco-efficiency in 102 countries | Land area Energy use Labor force | GDP | CO2 emissions PM2.5 emissions | Two-stage Super-SBM |
Robaina-Alves et al. [37] | Eco-efficiency in 27 European countries | Energy Capital Labor | GDP | Greenhouse gas emissions | A new stochastic frontier model |
Yang and Zhang [38] | Regional eco-efficiency in 30 provinces | Capital stock Labor Construction land area Water Energy | GDP | Solid waste emissions Household refuse SO2 emissions Soot and industrial dust emissions Waste water emissions | Global DEA |
Type | Indicator | Unit | Obs. | Min. | Max | Mean | Std. Dev. | |
---|---|---|---|---|---|---|---|---|
Input | Labor | Labor force | Person | 154 | 883 | 35,156 | 8397.92 | 6783.06 |
Capital | Annual investment in mining | 10,000 yuan | 154 | 1686.00 | 4,070,893.49 | 65,993.92 | 328,381.88 | |
Natural resources index | Mining water consumption | 100 million m3 | 154 | 2.02 | 2116.32 | 140.65 | 294.78 | |
Use area of the mining area | hectares | 154 | 114.48 | 28,451.7 | 4296.26 | 4606.62 | ||
Comprehensive energy consumption of mining industry | 10,000 tons of SCE | 154 | 0.10 | 22.06 | 3.43 | 3.46 | ||
Output | GMP | Gross mining output | 10,000 yuan | 154 | 4324.50 | 1,375,290.86 | 140,291.87 | 13,671.29 |
Undesirable output | Mining environmental pollution index | Mining wastewater discharge | 10,000 tons | 154 | 4.07 | 7822.18 | 463.16 | 1097.564 |
Mining dust emissions | ton | 154 | 5.037 | 23,210.37 | 876.39 | 2056.80 | ||
Waste rock emissions | 10,000 tons | 154 | 0.01 | 675,166.00 | 4580.26 | 54,391.46 |
Prefecture-Level Cities | Economic Efficiency | Rank | Environmental Efficiency | Rank | Resource Efficiency | Rank | Mining Eco-Efficiency | Rank |
---|---|---|---|---|---|---|---|---|
Baise | 0.9052 | 7 | 0.8318 | 6 | 0.8332 | 8 | 0.7012 | 6 |
Beihai | 1.1352 | 1 | 0.8683 | 3 | 1.3417 | 1 | 1.0493 | 1 |
Chongzuo | 1.0242 | 3 | 0.8379 | 5 | 0.9836 | 2 | 0.9484 | 3 |
Fangchenggang | 0.9238 | 5 | 0.8505 | 4 | 0.9162 | 4 | 0.6869 | 7 |
Guigang | 0.7027 | 13 | 0.4916 | 13 | 0.6113 | 11 | 0.4839 | 10 |
Guilin | 1.1166 | 2 | 0.9847 | 1 | 0.8969 | 5 | 1.0125 | 2 |
Hechi | 0.7332 | 11 | 0.4632 | 14 | 0.6098 | 12 | 0.5769 | 9 |
Hezhou | 0.7834 | 8 | 0.5038 | 12 | 0.9593 | 3 | 0.6055 | 8 |
Laibin | 0.4399 | 14 | 0.5543 | 11 | 0.2606 | 14 | 0.1771 | 14 |
Liuzhou | 0.7117 | 12 | 0.5827 | 10 | 0.7563 | 10 | 0.4399 | 13 |
Nanning | 0.7796 | 9 | 0.6345 | 8 | 0.8236 | 9 | 0.4807 | 12 |
Qinzhou | 0.7629 | 10 | 0.6254 | 9 | 0.5799 | 13 | 0.483 | 11 |
Wuzhou | 0.9157 | 6 | 0.8927 | 2 | 0.8918 | 6 | 0.7109 | 5 |
Yulin | 0.9399 | 4 | 0.6932 | 7 | 0.8633 | 7 | 0.7451 | 4 |
Mining Eco-Efficiency | Economic Efficiency | |||||
---|---|---|---|---|---|---|
Year | Center | Long and short axis ratio | Rotation | Center | Long and short axis ratio | Rotation |
2008 | 109.12° E, 23.76° N | 0.617 | 74.213 | 109.12° E, 23.58° N | 0.678 | 70.063 |
2018 | 109.09° E, 23.07° N | 1.180 | 92.896 | 109.14° E, 23.16° N | 0.792 | 75.551 |
Environmental Efficiency | Resource Efficiency | |||||
Year | Center | Long and short axis ratio | Rotation | Center | Long and short axis ratio | Rotation |
2008 | 108.99° E, 23.61° N | 0.615 | 69.918 | 109.15° E, 23.58° N | 0.609 | 71.736 |
2018 | 109.23° E, 23.42° N | 0.752 | 69.335 | 109.09° E,22.97° N | 0.871 | 63.816 |
Period | X1 | X2 | X3 | X4 | X5 |
---|---|---|---|---|---|
2008–2018 | 0.011 | 0.101 | 0.121 | 0.067 | 0.065 |
2008–2013 | 0.012 | 0.009 | 0.051 | 0.011 | 0.010 |
2014–2018 | 0.100 | 0.129 | 0.318 | 0.164 | 0.147 |
Variable | Model (1) | Model (2) |
---|---|---|
MES | 2.117 * | −6.383 |
(1.757) | (5.110) | |
57.226 * | ||
(32.418) | ||
lnFDI | 0.209 *** | 0.257 *** |
(0.047) | (0.054) | |
TI | 0.419 * | 0.419 |
(0.829) | (0.819) | |
ER | 0.360 * | 0.322 * |
(0.244) | (0.243) | |
cons | −0.205 | −0.289 |
(0.239) | (0.241) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zuo, Z.; Xu, D.; Wei, Y. Mining Eco-Efficiency Measurement and Driving Factors Identification Based on Meta-US-SBM in Guangxi Province, China. Int. J. Environ. Res. Public Health 2021, 18, 5397. https://doi.org/10.3390/ijerph18105397
Li Y, Zuo Z, Xu D, Wei Y. Mining Eco-Efficiency Measurement and Driving Factors Identification Based on Meta-US-SBM in Guangxi Province, China. International Journal of Environmental Research and Public Health. 2021; 18(10):5397. https://doi.org/10.3390/ijerph18105397
Chicago/Turabian StyleLi, Yonglin, Zhili Zuo, Deyi Xu, and Yi Wei. 2021. "Mining Eco-Efficiency Measurement and Driving Factors Identification Based on Meta-US-SBM in Guangxi Province, China" International Journal of Environmental Research and Public Health 18, no. 10: 5397. https://doi.org/10.3390/ijerph18105397