An Automatic and Operational Method for Land Cover Change Detection Using Spatiotemporal Analysis of MODIS Data: A Northern Ontario (Canada) Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kempeneers, P.; Sedano, F.; Strobl, P.; McInerney, D.O.; San-Miguel-Ayanz, J. Increasing Robustness of Postclassification Change Detection Using Time Series of Land Cover Maps. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3327–3339. [Google Scholar]
- Pourghasemi, H.M.; Gokceoglu, C. (Eds.) Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128152263. [Google Scholar]
- Teng, S.P.; Chen, Y.K.; Cheng, K.S.; Lo, H.C. Hypothesis-test-based landcover change detection using multi-temporal satellite images—A comparative study. Adv. Space Res. 2008, 41, 1744–1754. [Google Scholar] [CrossRef]
- Kleynhans, W.; Olivier, J.C.; Wessels, K.J.; Salmon, B.P.; van den Bergh, F.; Steenkamp, K. Detecting Land Cover Change Using an Extended Kalman Filter on MODIS NDVI Time-Series Data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Bazi, Y.; Bruzzone, L.; Melgani, F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Mamun, M.A.; Mondal, M.N.I.; Ahmed, B. Change detection-aided single linear prediction of multi-temporal satellite images. In Proceedings of the 17th International Conference on Computer and Information Technology, Dhaka, Bangladesh, 22–23 December 2014; pp. 332–335. [Google Scholar]
- Deng, J.S.; Wang, K.; Deng, Y.H.; Qi, G.J. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 2008, 29, 4823–4838. [Google Scholar] [CrossRef]
- Lu, M.; Pebesma, E.; Sanchez, A.; Verbesselt, J. Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series. ISPRS J. Photogramm. Remote Sens. 2016, 117, 227–236. [Google Scholar] [CrossRef]
- Aktar, M.; Mamun, M.A.; Hossain, M.A. Statistical Similarity Based Change Detection for Multitemporal Remote Sensing Images. J. Electr. Comput. Eng. 2017. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R.; Justice, C.; van Leeuwen, W. MODIS Vegetation Index Algorithm Theoretical Basis v3; NASA: Washington, DC, USA, 1999. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (accessed on 10 June 2020).
- Odunuga, S.; Badru, G. Landcover Change, Land Surface Temperature, Surface Albedo and Topography in the Plateau Region of North-Central Nigeria. Land 2015, 4, 300–324. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Space Sci. 2017, 20, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Sentian, J.; Kong, S. The Effect of Land Cover Changes on Surface Temperature and Precipitation in the Southeast Asia Region. Adv. Sci. Lett. 2015, 21, 181–184. [Google Scholar] [CrossRef]
- Gogoi, P.P.; Vinoj, V.; Swain, D.; Roberts, G.; Dash, J.; Tripathy, S. Land use and land cover change effect on surface temperature over Eastern India. Sci. Rep. 2019, 9, 8859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Wang, S.; Bai, X. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci. Rep. 2018. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Kingra, P.K.; Setia, R.; Singh, S.P.; Pateriya, B. Influence of land use/land cover changes on surface temperature and its effect on crop yield in different agro-climatic regions of Indian Punjab. Geocarto. Int. 2019, 1–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S. Impacts of land cover transitions on surface temperature in China based on satellite observations. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Waylen, P.; Southworth, J.; Gibbes, C.; Tsai, H. Time series analysis of land cover change: Developing statistical tools to determine significance of land cover changes in persistence analyses. Remote Sens. 2014, 6, 4473–4497. [Google Scholar] [CrossRef] [Green Version]
- Statistics Canada. Census Profile, 2016 Census. Available online: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/details/page.cfm?Lang=E&Geo1=CSD&Code1=3556042&Geo2=CD&Code2=3556&SearchText=Cochrane&SearchType=Begins&SearchPR=01&B1=All&TABID=1&type=0 (accessed on 8 February 2020).
- Ontario. Far North Land Cover. 2015. Available online: https://data.ontario.ca/dataset/far-north-land-cover (accessed on 13 January 2020).
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data Set]. NASA EOSDIS Land Processes DAAC. 2019. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C186286578-LPDAAC_ECS.html (accessed on 6 December 2019).
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data Set]. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://lpdaac.usgs.gov/products/mod13q1v006/ (accessed on 15 December 2019).
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006 [Data Set]. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A2 (accessed on 20 January 2020).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute (ESRI). ArcGIS Release 10.7; ESRI Inc.: Redlands, CA, USA, 2018. [Google Scholar]
- MATLAB. Version 9.6.0.1150989 (R2019a) Update 4; The MathWorks Inc.: Natick, MA, USA, 2019. [Google Scholar]
- Demšar, U.; Harris, P.; Brunsdon, C.; Fotheringham, A.S.; McLoone, S. Principal Component Analysis on Spatial Data: An Overview. Ann. Assoc. Am. Geogr. 2013, 103, 106–128. [Google Scholar] [CrossRef]
- Mouselimis, L. Image Segmentation Based on Superpixels and Clustering. Available online: https://cran.r-project.org/web/packages/OpenImageR/vignettes/Image_segmentation_superpixels_clustering.html (accessed on 3 June 2019).
- Sinai, Y.G. Introduction to Ergodic Theory; Princeton University Press: Princeton, NJ, USA, 1977. [Google Scholar]
- King, A.P.; Eckersley, R.J. Statistics for Biomedical Engineers and Scientists; Academic Press: Cambridge, MA, USA, 2019; Chapter 8; pp. 173–199. ISBN 978-008-102-939-8. [Google Scholar]
- Aldhshan, S.R.S.; Shafri, H.Z. Change detection on land use/land cover and land surface temperature using spatiotemporal data of Landsat: A case study of Gaza Strip. Arab. J. Geosci. 2019, 12, 443. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security and Greenhouse gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwixv5GO4MPtAhWDW80KHW1oCtcQFjAAegQIBhAC&url=https%3A%2F%2Fwww.ipcc.ch%2Fsite%2Fassets%2Fuploads%2F2019%2F08%2F4.-SPM_Approved_Microsite_FINAL.pdf&usg=AOvVaw0kuYKb_g8YFTYyBmhRWkid (accessed on 26 December 2020).
- Zhang, F.; Tiyip, T.; Kung, H.; Johnson, V.C.; Maimaitiyiming, M.; Zhou, M.; Wang, J. Dynamics of land surface temperature (LST) in response to land use and land cover (LULC) changes in the Weigan and Kuqa river oasis, Xinjiang, China. Arab. J. Geosci. 2016, 9, 499. [Google Scholar] [CrossRef]
- Xu, X.; Li, B.; Yuan, Y.; Gao, X.; Zhang, T.; Sun, Q. Detecting Different Types of Directional Land Cover Changes Using MODIS NDVI Time Series Dataset. Remote Sens. 2016, 8, 495. [Google Scholar] [CrossRef] [Green Version]
- Nackaerts, K.; Vaesen, K.; Muys, B.; Coppin, P. Comparative performance of a modified change vector analysis in forest change detection. Int. J. Remote Sens. 2005, 26, 839–852. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution global maps of 21-st century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Geological Survey. Landsat Missions. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-surface-reflectance-derived-spectral-indices?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 7 May 2021).
- European Space Agency. Data Products. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products (accessed on 7 May 2021).
Reference Data | ||||
---|---|---|---|---|
Classified Data | Changed | Unchanged | Totals | User’s Accuracy (%) |
Changed | 21 | 4 | 25 | 84 |
Unchanged | 8 | 17 | 25 | 68 |
Total | 29 | 21 | ||
Producer’s Accuracy (%) | 72 | 81 | Overall Accuracy: 76% Kappa Coefficient: 0.52 |
Reference Data | ||||
---|---|---|---|---|
Classified Data | Changed | Unchanged | Totals | User’s Accuracy (%) |
Changed | 24 | 3 | 27 | 89 |
Unchanged | 5 | 18 | 23 | 78 |
Total | 29 | 21 | ||
Producer’s Accuracy (%) | 83 | 86 | Overall Accuracy: 84% Kappa Coefficient: 0.68 |
Reference Data | ||||
---|---|---|---|---|
Classified Data | Changed | Unchanged | Totals | User’s Accuracy (%) |
Changed | 21 | 5 | 26 | 85 |
Unchanged | 1 | 23 | 24 | 96 |
Total | 22 | 28 | ||
Producer’s Accuracy (%) | 96 | 85 | Overall Accuracy: 88% Kappa Coefficient: 0.76 |
Reference Data | ||||
---|---|---|---|---|
Classified Data | Changed | Unchanged | Totals | User’s Accuracy (%) |
Changed | 20 | 2 | 22 | 91 |
Unchanged | 5 | 23 | 28 | 82 |
Total | 25 | 25 | ||
Producer’s Accuracy (%) | 80 | 92 | Overall Accuracy: 86% Kappa Coefficient: 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ituen, I.; Hu, B. An Automatic and Operational Method for Land Cover Change Detection Using Spatiotemporal Analysis of MODIS Data: A Northern Ontario (Canada) Case Study. ISPRS Int. J. Geo-Inf. 2021, 10, 325. https://doi.org/10.3390/ijgi10050325
Ituen I, Hu B. An Automatic and Operational Method for Land Cover Change Detection Using Spatiotemporal Analysis of MODIS Data: A Northern Ontario (Canada) Case Study. ISPRS International Journal of Geo-Information. 2021; 10(5):325. https://doi.org/10.3390/ijgi10050325
Chicago/Turabian StyleItuen, Ima, and Baoxin Hu. 2021. "An Automatic and Operational Method for Land Cover Change Detection Using Spatiotemporal Analysis of MODIS Data: A Northern Ontario (Canada) Case Study" ISPRS International Journal of Geo-Information 10, no. 5: 325. https://doi.org/10.3390/ijgi10050325
APA StyleItuen, I., & Hu, B. (2021). An Automatic and Operational Method for Land Cover Change Detection Using Spatiotemporal Analysis of MODIS Data: A Northern Ontario (Canada) Case Study. ISPRS International Journal of Geo-Information, 10(5), 325. https://doi.org/10.3390/ijgi10050325