Application of Random Forest and SHAP Tree Explainer in Exploring Spatial (In)Justice to Aid Urban Planning
Abstract
:1. Introduction
2. Background and Related Works
3. Materials
3.1. Study Area
3.2. Dataset
3.3. Data Preprocessing
4. Methodology
4.1. Classification Model
4.1.1. Random Forest (RF) Classifier
4.1.2. Cross Validation and Hyperparameter Tuning
4.1.3. Classifier Performance Evaluation Metrics
4.2. Model Interpretability with SHAP
- (a)
- What are the most influential spatial features impacting the model output?
- (b)
- What are the characteristics of a space that exhibits upward mobility and spatial justice, respectively?
- (c)
- What are the characteristics for the spatially unjust places?
5. Results
5.1. Classification Results
5.2. Model Interpretability and Feature Importance Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soja, E.W. Seeking Spatial Justice; Globalization and community series; University of Minnesota Press: Minneapolis, MN, USA, 2010; ISBN 978-0-8166-6667-6. [Google Scholar]
- Rocco, R.C. Why Discuss Spatial Justice in Urbanism Studies. Atlantis 2014, 24, 14–16. [Google Scholar]
- Fainstein, S.S. The Just City. Int. J. Urban Sci. 2014, 18, 1–18. [Google Scholar] [CrossRef]
- Williams, J. Spatial Justice as Analytic Framework. Ph.D. Thesis, University of Michigan, Ann Arbor, MN, USA, 2018. [Google Scholar]
- Wei, Y.D.; Xiao, W.; Simon, C.A.; Liu, B.; Ni, Y. Neighborhood, Race and Educational Inequality. Cities 2018, 73, 1–13. [Google Scholar] [CrossRef]
- Jones, A.; Mamudu, H.M.; Squires, G.D. Mortgage Possessions, Spatial Inequality, and Obesity in Large US Metropolitan Areas. Public Health 2020, 181, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pose, A.; Storper, M. Housing, Urban Growth and Inequalities: The Limits to Deregulation and Upzoning in Reducing Economic and Spatial Inequality. Urban Stud. 2020, 57, 223–248. [Google Scholar] [CrossRef]
- Garcia, X.; Garcia-Sierra, M.; Domene, E. Spatial Inequality and Its Relationship with Local Food Environments: The Case of Barcelona. Appl. Geogr. 2020, 115, 102140. [Google Scholar] [CrossRef]
- Liu, C.; Duan, D. Spatial Inequality of Bus Transit Dependence on Urban Streets and Its Relationships with Socioeconomic Intensities: A Tale of Two Megacities in China. J. Transp. Geogr. 2020, 86, 102768. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, J.; Li, W.; Li, X. Public Transportation and the Spatial Inequality of Urban Park Accessibility: New Evidence from Hong Kong. Transp. Res. Part D Transp. Environ. 2019, 76, 111–122. [Google Scholar] [CrossRef]
- Chetty, R.; Hendren, N.; Kline, P.; Saez, E.; Turner, N. Is the United States Still a Land of Opportunity? Recent Trends in Intergenerational Mobility; National Bureau of Economic Research: Cambridge, MA, USA, 2014; p. w19844. [Google Scholar]
- Bullard, R.D. Dumping in Dixie: Race, Class, and Environmental Quality, 3rd ed.; Westview Press: Boulder, CO, USA, 2000; ISBN 978-0-8133-6792-7. [Google Scholar]
- Weiher, G.R. The Fractured Metropolis: Political Fragmentation and Metropolitan Segregation; SUNY Series, the New Inequalities; State University of New York Press: Albany, NY, USA, 1991; ISBN 978-0-7914-0565-9. [Google Scholar]
- Orfield, M. Metropolitics: A Regional Agenda for Community and Stability; Brookings Institution Press: Washington, DC, USA; Lincoln Institute of Land Policy: Cambridge, MA, USA, 1997; ISBN 978-0-8157-6640-7. [Google Scholar]
- Deb, D.; Smith, R.M. Use of Machine Learning in Exploring Spatial (In) Justices 1. In Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 14–17 December 2020; pp. 1211–1217. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Miller, T. Explanation in Artificial Intelligence: Insights from the Social Sciences. arXiv 2018, arXiv:1706.07269. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv 2016, arXiv:1602.04938. [Google Scholar]
- Shrikumar, A.; Greenside, P.; Shcherbina, A.; Kundaje, A. Not Just a Black Box: Learning Important Features Through Propagating Activation Differences. arXiv 2017, arXiv:1605.01713. [Google Scholar]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. Explainable AI for Trees: From Local Explanations to Global Understanding. arXiv 2019, arXiv:1905.04610. [Google Scholar] [CrossRef]
- Lefebvre, H.; Deulceux, S.; Hess, R.; Weigand, G. Le Droit à La Ville; Economica-Anthropos: Paris, France, 2009; ISBN 978-2-7178-5708-5. [Google Scholar]
- Harvey, D. Geographies of justice and social transformation. In Social Justice and the City, Rev. ed.; University of Georgia Press: Athens, Greece, 2009; ISBN 978-0-8203-3403-5. [Google Scholar]
- Pirie, G.H. On Spatial Justice. Environ. Plan A 1983, 15, 465–473. [Google Scholar] [CrossRef]
- Fainstein, S.S. The Just City; Cornell University Press: Ithaca, NY, USA, 2010; ISBN 978-0-8014-7690-7. [Google Scholar]
- Chetty, R.; Hendren, N. The Impacts of Neighborhoods on Intergenerational Mobility I: Childhood Exposure Effects. Q. J. Econ. 2018, 133, 1107–1162. [Google Scholar] [CrossRef]
- Ewing, R.; Hamidi, S.; Grace, J.B.; Wei, Y.D. Does Urban Sprawl Hold down Upward Mobility? Landsc. Urban Plan. 2016, 148, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Altzinger, W.; Cuaresma, J.C.; Rumplmaier, B.; Sauer, P.; Schneebaum, A. Education and Social Mobility in Europe: Levelling the Playing Field for Europe’s Children and Fuelling Its Economy; WWW for Europe: Vienna, Austria, 2015. [Google Scholar]
- Corak, M. Income Inequality, Equality of Opportunity, and Intergenerational Mobility. J. Econ. Perspect. 2013, 27, 79–102. [Google Scholar] [CrossRef] [Green Version]
- Black, S.; Devereux, P. Recent Developments in Intergenerational Mobility; National Bureau of Economic Research: Cambridge, MA, USA, 2010; p. w15889. [Google Scholar]
- Hardaway, C.R.; McLoyd, V.C. Escaping Poverty and Securing Middle Class Status: How Race and Socioeconomic Status Shape Mobility Prospects for African Americans During the Transition to Adulthood. J. Youth Adolesc. 2009, 38, 242–256. [Google Scholar] [CrossRef]
- Delgado, R. The Myth of Upward Mobility. Lawreview 2007, 68. [Google Scholar] [CrossRef] [Green Version]
- Powell, W.S. Encyclopedia of North Carolina; University of North Carolina Press: Chapel Hill, NC, USA, 2006. [Google Scholar]
- NC OneMap Geospatial Portal; North Carolina Government Data Analytics Center: Raleigh, NC, USA, 2020.
- Barandela, R.; Valdovinos, R.M.; Sánchez, J.S.; Ferri, F.J. The Imbalanced Training Sample Problem: Under or over Sampling? In Structural, Syntactic, and Statistical Pattern Recognition; Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3138, pp. 806–814. ISBN 978-3-540-22570-6. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. JAIR 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Bao, L.; Juan, C.; Li, J.; Zhang, Y. Boosted Near-Miss Under-Sampling on SVM Ensembles for Concept Detection in Large-Scale Imbalanced Datasets. Neurocomputing 2016, 172, 198–206. [Google Scholar] [CrossRef]
- Haibo, H.; Yang, B.; Garcia, E.A.; Li, S. ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 1322–1328. [Google Scholar]
- Prusa, J.; Khoshgoftaar, T.M.; Dittman, D.J.; Napolitano, A. Using Random Undersampling to Alleviate Class Imbalance on Tweet Sentiment Data. In Proceedings of the 2015 IEEE International Conference on Information Reuse and Integration, San Francisco, CA, USA, 13–15 August 2015; pp. 197–202. [Google Scholar]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
Rocco’s Factors | Spatial Feature Variables |
---|---|
Public Goods (10) | Number of Schools |
Water Service | |
Sewer Service | |
Fire Stations | |
Hospitals | |
Medical Facilities | |
Correctional Facilities | |
Emergency Medical Facilities | |
Law Enforcement Locations | |
Public Health Department | |
Basic Services (5) | Gas Stations |
Food Desert | |
Limited Broadband | |
Pharmacies | |
Nursing Homes | |
Cultural Goods (3) | Libraries |
Colleges | |
Non-Public Schools | |
Economic Opportunity (4) | Mean Travel Time to Work |
Total Jobs | |
Jobs Density | |
Area covered. | |
Healthy Environment (6) | Underground storage tanks |
Brownfields | |
NPDES Sites | |
Hazardous Waste Facilities | |
Landfills | |
Gamelands |
Classification Algorithms | Precision | Recall | Accuracy | F1 | ROC |
---|---|---|---|---|---|
k-nearest neighbor (kNN) | 0.77 | 0.82 | 0.78 | 0.79 | 0.78 |
Support vector machine (SVM) | 0.81 | 0.77 | 0.79 | 0.79 | 0.79 |
Random forest (RF) | 0.86 | 0.85 | 0.86 | 0.86 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deb, D.; Smith, R.M. Application of Random Forest and SHAP Tree Explainer in Exploring Spatial (In)Justice to Aid Urban Planning. ISPRS Int. J. Geo-Inf. 2021, 10, 629. https://doi.org/10.3390/ijgi10090629
Deb D, Smith RM. Application of Random Forest and SHAP Tree Explainer in Exploring Spatial (In)Justice to Aid Urban Planning. ISPRS International Journal of Geo-Information. 2021; 10(9):629. https://doi.org/10.3390/ijgi10090629
Chicago/Turabian StyleDeb, Debzani, and Russell M. Smith. 2021. "Application of Random Forest and SHAP Tree Explainer in Exploring Spatial (In)Justice to Aid Urban Planning" ISPRS International Journal of Geo-Information 10, no. 9: 629. https://doi.org/10.3390/ijgi10090629