A Three-Dimensional Visualization and Optimization Method of Landslide Disaster Scenes Guided by Knowledge
Abstract
:1. Introduction
2. Methodology
2.1. Overall Framework
2.2. Rapid Acquisition of Deposit Volume Based on 3D Reconstruction
2.3. Knowledge-Guided Dynamic Visualization of Landslide Disaster Scene
2.4. Optimization of Landslide Disaster Scenes Considering Visual Salience
3. Prototype System Implementation and Experimental Analysis
3.1. Prototype System Implementation and Study Area
3.2. Experimental Analysis
3.2.1. Rapid Acquisition of Landslide Deposit Volume
3.2.2. Dynamic Visualization of Disaster Scene
3.2.3. Optimization of Disaster Scene
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuster, R.L. Socioeconomic significance of landslides. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board Special Report 247; National Academy of Sciences: Washington, DC, USA, 1996; pp. 12–35. [Google Scholar]
- UNDRR 2009. Global Annual Report, GAR 2009. Available online: https://www.preventionweb.net/english/hyogo/gar/2009/ (accessed on 27 March 2022).
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Cui, P. Progress and prospects in research on mountain hazards in China. Prog. Geogr. 2014, 33, 145–152. [Google Scholar]
- Fan, Y.D.; Wu, W.; Wang, W.; Liu, M.; Wen, Q. Research progress of disaster remote sensing in China. J. Remote Sens. 2016, 20, 1170–1184. [Google Scholar]
- Zhu, Q.; Miao, S.X.; Ding, Y.L.; Qi, H.; He, X.B.; Cao, Z.Y. Knowledge-guided Gross Errors Detection and Elimination Approach of Landslide Monitoring Data. Geomat. Inf. Sci. Wuhan Univ. 2017, 44, 957–966. [Google Scholar]
- Xu, Q.; Zheng, G.; Li, W.L.; He, C.Y.; Dong, X.J.; Guo, C.; Feng, W.K. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. J. Eng. Geol. 2018, 26, 1534–1551. [Google Scholar]
- Li, H.B.; Qi, S.C.; Chen, H.; Liao, H.M.; Cui, Y.F.; Zhou, J.W. Mass movement and formation process analysis of the two sequential landslide dam events in Jinsha River, Southwest China. Landslides 2019, 16, 2247–2258. [Google Scholar] [CrossRef]
- UNDRR 2019. Global Annual Report 2019, GAR. Available online: https://gar.undrr.org/report-2019 (accessed on 27 March 2022).
- Wallemacq, P. Economic Losses, Poverty & Disasters: 1998–2017; Centre for Research on the Epidemiology of Disasters, CRED: Brussels, Belgium, 2018. [Google Scholar]
- Denolle, M.A.; Dunham, E.M.; Prieto, G.A.; Beroza, G.C. Strong ground motion prediction using virtual earthquakes. Science 2014, 343, 399–403. [Google Scholar] [CrossRef]
- UNISDR (United Nations International Strategy for Disaster Reduction). Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations: Geneva, Switzerland, 2015. [Google Scholar]
- Cui, Y.; Deng, J.; Xu, C. Volume estimation and stage division of the Mahu landslide in Sichuan Province, China. Nat. Hazards 2018, 93, 941–955. [Google Scholar] [CrossRef]
- Koca, T.K.; Koca, M.Y. Volume estimation and evaluation of rotational landslides using multi-temporal aerial photographs in Çağlayan dam reservoir area, Turkey. Arab. J. Geosci. 2019, 12, 140. [Google Scholar] [CrossRef]
- Fernández, T.; Pérez-García, J.L.; Gómez-López, J.M.; Cardenal, J.; Moya, F.; Delgado, J. Multitemporal Landslide Inventory and Activity Analysis by Means of Aerial Photogrammetry and LiDAR Techniques in an Area of Southern Spain. Remote Sens. 2021, 13, 2110. [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F.; Maruyama, Y. Detection of earthquake-induced landslides during the 2018 Kumamoto earthquake using multitemporal airborne Lidar data. Remote Sens. 2019, 11, 2292. [Google Scholar] [CrossRef] [Green Version]
- Golovko, D.; Behling, R.; Wetzel, H.; Roessner, S. GIS Methods and Multi-Temporal Remote Sensing Data for Improved Landslide Hazard Mapping in Southern Kyrgyzstan. Int. J. Geoinform. 2015, 11, 23–29. [Google Scholar]
- Huang, Y.; Yu, M.; Xu, Q.; Sawada, K.; Moriguchi, S.J.; Yashima, A.; Liu, C.W.; Xue, L. InSAR-derived digital elevation models for terrain change analysis of earthquake-triggered flow-like landslides based on ALOS/PALSAR imagery. Environ. Earth Sci. 2015, 73, 7661–7668. [Google Scholar] [CrossRef]
- Bayer, B.; Simoni, A.; Schmidt, D.; Bertello, L. Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Eng Geol. 2017, 226, 20–32. [Google Scholar] [CrossRef]
- Guzzetti, F.; Ardizzone, F.; Cardinali, M.; Rossi, M.; Valigi, D. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet. Sci. Lett. 2009, 279, 222–229. [Google Scholar] [CrossRef]
- Fan, X.M.; Scaringi, G.; Korup, O.; West, A.J.; van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E.; et al. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef] [Green Version]
- Meier, C.; Jaboyedoff, M.; Derron, M.H.; Gerber, C. A method to assess the probability of thickness and volume estimates of small and shallow initial landslide ruptures based on surface area. Landslides 2020, 17, 975–982. [Google Scholar] [CrossRef]
- Martha, T.R.; Reddy, P.S.; Bhatt, C.M.; Raj, K.B.G.; Nalini, J.; Padmanabha, E.A.; Narender, B.; Kumar, K.V.; Muralikrishnan, S.; Rao, G.S.; et al. Debris volume estimation and monitoring of Phuktal river landslide-dammed lake in the Zanskar Himalayas, India using Cartosat-2 images. Landslides 2017, 14, 373–383. [Google Scholar] [CrossRef]
- Warrick, J.A.; Ritchie, A.C.; Schmidt, K.M.; Reid, M.E.; Logan, J. Characterizing the catastrophic 2017 Mud Creek landslide, California, using repeat structure-from-motion (SfM) photogrammetry. Landslides 2019, 16, 1201–1219. [Google Scholar] [CrossRef]
- González-Díez, A.; Fernández-Maroto, G.; Doughty, M.W.; Díaz de Terán, J.R.; Bruschi, V.; Cardenal, J.; Pérez, J.L.; Mata, E.; Delgado, J. Development of a methodological approach for the accurate measurement of slope changes due to landslides, using digital photogrammetry. Landslides 2014, 11, 615–628. [Google Scholar] [CrossRef]
- Lin, C.H.; Lin, M.L. Evolution of the large landslide induced by Typhoon Morakot: A case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng Geol. 2015, 197, 172–187. [Google Scholar] [CrossRef]
- Xu, B. Study on Deformation Characteristics of Instability and Sliding Model of Creep Landslide; University of Science and Technology Beijing: Beijing, China, 2017. [Google Scholar]
- Du, Z.Q.; Li, J. Landslide Disaster Simulation Method Based on Particle System of PhysX. Geomat. World 2017, 24, 46–50. [Google Scholar]
- Liu, L.B. Three-Dimensional Visualization Research of Reservior Landslide Based on 3dsMAX and OpenGL; Northwest A&F University: Yangling, China, 2010. [Google Scholar]
- Zhou, B. The Three Dimensional Visualization and Dynamic Simulation of Landslide in Three Gorges Area; Tsinghua University: Beijing, China, 2012. [Google Scholar]
- He, Q.L. Visual Simulation of Mountain Landslide Process Based on Multi-Source and Multi-Temporal Remote Sensing Data; Southwest Jiaotong University: Chengdu, China, 2019. [Google Scholar]
- Di, B.F.; Stamatopoulos, C.A.; Stamatopoulos, A.C.; Liu, E.N.; Balla, L. Proposal, application and partial validation of a simplified expression evaluating the stability of sandy slopes under rainfall conditions. Geomorphology 2021, 395, 107966. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Take, W.A.; Bolton, M.D.; Wong, P.C.P.; Yeung, F.J. Evaluation of landslide triggering mechanisms in model fill slopes. Landslides 2004, 1, 173–184. [Google Scholar] [CrossRef]
- Dassi, F.; Ettinger, B.; Perotto, S.; Sangalli, L.M. A mesh simplification strategy for a spatial regression analysis over the cortical surface of the brain. Appl Numer Math. 2015, 90, 111–131. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, X.W.; Ding, Y.L.; Liu, M.W.; He, H.G.; Yang, W.J.; Chen, L.Y.; Cao, Z.Y. Organization and scheduling method of 3D urban scene data driven by visual perception. J. Southwest Jiaotong Univ. 2017, 52, 869–876. [Google Scholar]
- Hu, Y.; Zhu, J.; Li, W.L.; Zhang, Y.H.; Zhu, Q.; Qi, H.; Zhang, H.X.; Cao, Z.Y.; Yang, W.J.; Zhang, P.C. Construction and optimization of three-dimensional disaster scenes within mobile virtual reality. ISPRS Int. J. Geo. Inf. 2018, 7, 215. [Google Scholar] [CrossRef] [Green Version]
- Lai, G.L.; Ding, L.; Qin, Z.Y.; Tong, X.C. An Effective Algorithm Research of Scenario Voxelization Organization and Occlusion Culling. Iop Conf. 2016, 46, 012020. [Google Scholar] [CrossRef] [Green Version]
- Robles-Ortega, M.D.; Ortega, L.; Feito, F.R. Efficient visibility determination in urban scenes considering terrain information. ACM Trans. Spat. Algorithms Syst. 2017, 3, 1–24. [Google Scholar] [CrossRef]
- Fu, L.; Zhu, J.; Li, W.L.; Zhu, Q.; Xu, B.L.; Xie, Y.K.; Zhang, Y.H.; Hu, Y.; Lu, J.T.; Dang, P.; et al. Tunnel vision optimization method for VR flood scenes based on Gaussian blur. Int. J. Digit Earth. 2021, 14, 821–835. [Google Scholar] [CrossRef]
- Fu, L.; Zhu, J.; Li, W.L.; You, J.G.; Hua, Z.Y. Fast estimation method of volumes of landslide deposit by the 3D reconstruction of smartphone images. Landslides 2021, 18, 3269–3278. [Google Scholar] [CrossRef]
- Mora, O.E.; Chen, J.; Stoiber, P.; Koppanyi, Z.; Pluta, D.; Josenhans, R.; Okubo, M. Accuracy of stockpile estimates using low-cost sUAS photogrammetry. Int. J. Remote Sens. 2020, 41, 4512–4529. [Google Scholar] [CrossRef]
Estimation Method | Estimation Result (m3) | Estimation Time (s) |
---|---|---|
Proposed method | 9102.79 | 182 |
ContextCapture | 8644.23 | 500 |
Metashape | 10,769.54 | 352 |
Pix4Dmapper | 8710.59 ± 228.665 | 366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Zhu, J.; Lai, J.; Li, W.; Dang, P.; Yin, L.; Li, J.; Guo, Y.; You, J. A Three-Dimensional Visualization and Optimization Method of Landslide Disaster Scenes Guided by Knowledge. ISPRS Int. J. Geo-Inf. 2022, 11, 340. https://doi.org/10.3390/ijgi11060340
Fu L, Zhu J, Lai J, Li W, Dang P, Yin L, Li J, Guo Y, You J. A Three-Dimensional Visualization and Optimization Method of Landslide Disaster Scenes Guided by Knowledge. ISPRS International Journal of Geo-Information. 2022; 11(6):340. https://doi.org/10.3390/ijgi11060340
Chicago/Turabian StyleFu, Lin, Jun Zhu, Jianbo Lai, Weilian Li, Pei Dang, Lingzhi Yin, Jialuo Li, Yukun Guo, and Jigang You. 2022. "A Three-Dimensional Visualization and Optimization Method of Landslide Disaster Scenes Guided by Knowledge" ISPRS International Journal of Geo-Information 11, no. 6: 340. https://doi.org/10.3390/ijgi11060340
APA StyleFu, L., Zhu, J., Lai, J., Li, W., Dang, P., Yin, L., Li, J., Guo, Y., & You, J. (2022). A Three-Dimensional Visualization and Optimization Method of Landslide Disaster Scenes Guided by Knowledge. ISPRS International Journal of Geo-Information, 11(6), 340. https://doi.org/10.3390/ijgi11060340