A Multiobjective Land Use Design Framework with Geo-Big Data for Station-Level Transit-Oriented Development Planning
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Problem Statement
3.2. TOD Planning Model
3.2.1. Parameter Definition
3.2.2. Decision Variables
3.2.3. Objectives
- MRT ridership
- 2.
- Compactness
- 3.
- Land use conflict
- 4.
- Land use mix
- 5.
- Environmental effects
- 6.
- Destination accessibility
3.2.4. Constraints
3.3. Optimization Approach
- Representation and Initialization
- 2.
- Fitness
- 3.
- Preselection
- 4.
- Conventional Genetic Operators
- 5.
- Elitism and Termination
4. Case Study
4.1. Study Area
4.2. Data Description and TOD Planning Model Construction
Categories | Variables | Source |
---|---|---|
Land use | Residential density | The area of interest (AOI) of Amap, building outlines with floors, and the floor area ratio from planning information and housing websites (such as https://m.ke.com/sh/, accessed on 31 October 2020) |
Economic density | ||
Commercial density | ||
Public density | ||
Industry density | ||
Built environment | Length of the street network | Open Street Map (OSM) |
Population density | Landscan 2018 [52] | |
Number of road intersections | Open Street Map (OSM) | |
Transit service | Number of metro lines | The official website of Shanghai Metro |
Number of bus stops | The points of interest (POI) of Amap | |
Terminal station (dummy) | The official website of Shanghai Metro | |
Departure interval | The official website of Shanghai Metro | |
Demographics | Household | Housing websites |
Housing price | Housing websites | |
Ridership | MRT ridership (dependent variable) | Smart card data |
4.3. Results and Analysis
4.3.1. Ridership Modeling
4.3.2. Optimized Land Use Layouts
4.3.3. Further Selection: A Feasible Solution for the Study Station
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Quan, J.; Yan, B.; He, C. Urban rail investment and transit-oriented development in Beijing: Can it reach a higher potential? Transp. Res. Part A Policy Pract. 2016, 89, 140–150. [Google Scholar] [CrossRef]
- Chen, E.; Ye, Z.; Wang, C.; Zhang, W. Discovering the spatio-temporal impacts of built environment on metro ridership using smart card data. Cities 2019, 95, 102359. [Google Scholar] [CrossRef]
- Lyu, G.; Bertolini, L.; Pfeffer, K. Developing a TOD typology for Beijing metro station areas. J. Transp. Geogr. 2016, 55, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Motieyan, H.; Mesgari, M.S. An Agent-Based Modeling approach for sustainable urban planning from land use and public transit perspectives. Cities 2018, 81, 91–100. [Google Scholar] [CrossRef]
- Zhang, Y.; Marshall, S.; Manley, E. Network criticality and the node-place-design model: Classifying metro station areas in Greater London. J. Transp. Geogr. 2019, 79, 102485. [Google Scholar] [CrossRef]
- Li, Z.; Han, Z.; Xin, J.; Luo, X.; Su, S.; Weng, M. Transit oriented development among metro station areas in Shanghai, China: Variations, typology, optimization and implications for land use planning. Land Use Policy 2019, 82, 269–282. [Google Scholar] [CrossRef]
- Ibraeva, A.; Correia, G.H.D.A.; Silva, C.; Antunes, A.P. Transit-oriented development: A review of research achievements and challenges. Transp. Res. Part A Policy Pract. 2020, 132, 110–130. [Google Scholar] [CrossRef]
- Motieyan, H.; Mesgari, M.S. Towards Sustainable Urban Planning Through Transit-Oriented Development (A Case Study: Tehran). ISPRS Int. J. Geo-Inf. 2017, 6, 402. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A. A methodology to modify land uses in a transit oriented development scenario. J. Environ. Manag. 2018, 213, 467–477. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, M.; Xu, T. A conceptual framework and implementation tool for land use planning for corridor transit oriented development. Cities 2020, 107, 102939. [Google Scholar] [CrossRef]
- Lin, J.J.; Gau, C.C. A TOD planning model to review the regulation of allowable development densities around subway stations. Land Use Policy 2006, 23, 353–360. [Google Scholar] [CrossRef]
- Lin, J.; Li, C. A grey programming model for regional transit-oriented development planning. Pap. Reg. Sci. 2008, 87, 119–138. [Google Scholar] [CrossRef]
- Li, Y.; Guo, H.L.; Li, H.; Xu, G.H.; Wang, Z.R.; Kong, C.W. Transit-oriented land planning model considering sustainability of mass rail transit. J. Urban Plan. Dev. 2010, 136, 243–248. [Google Scholar] [CrossRef]
- Ma, X.; Chen, X.; Li, X.; Ding, C.; Wang, Y. Sustainable station-level planning: An integrated transport and land use design model for transit-oriented development. J. Clean. Prod. 2018, 170, 1052–1063. [Google Scholar] [CrossRef]
- Huang, X.; Liang, Q.; Feng, Z.; Chai, S. A TOD Planning Model Integrating Transport and Land Use in Urban Rail Transit Station Areas. IEEE Access 2021, 9, 1103–1115. [Google Scholar] [CrossRef]
- Calthorpe, P. The Next American Metropolis: Ecology, Community, and the American Dream; Princeton Architectural Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Cervero, R. The Transit Metropolis: A Global Inquiry; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Cervero, R.; Murakami, J. Rail + Property Development: A Model of Sustainable Transit Finance and Urbanism. Institute of Transportation Studies, UC Berkeley, 2008. Available online: https://escholarship.org/uc/item/6jx3k35x (accessed on 31 October 2020).
- Higgins, C.D.; Kanaroglou, P.S. A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region. J. Transp. Geogr. 2016, 52, 61–72. [Google Scholar] [CrossRef]
- Dou, M.; Wang, Y.; Dong, S. Integrating Network Centrality and Node-Place Model to Evaluate and Classify Station Areas in Shanghai. ISPRS Int. J. Geo-Inf. 2021, 10, 414. [Google Scholar] [CrossRef]
- Cao, K.; Batty, M.; Huang, B.; Liu, Y.; Yu, L.; Chen, J. Spatial multi-objective land use optimization: Extensions to the non-dominated sorting genetic algorithm-II. Int. J. Geogr. Inf. Sci. 2011, 25, 1949–1969. [Google Scholar] [CrossRef]
- Lin, J.J.; Feng, C.M. A bi-level programming model for the land use—Network design problem. Ann. Regional Sci. 2003, 37, 93–105. [Google Scholar] [CrossRef]
- Yim, K.K.W.; Wong, S.C.; Chen, A.; Wong, C.K.; Lam, W.H.K. A reliability-based land use and transportation optimization model. Transp. Res. Part C Emerg. Technol. 2011, 19, 351–362. [Google Scholar] [CrossRef]
- Levi, Y.; Bekhor, S.; Rosenfeld, Y. A multi-objective optimization model for urban planning: The case of a very large floating structure. Transp. Res. Part C Emerg. Technol. 2019, 98, 85–100. [Google Scholar] [CrossRef]
- Abdul-Rahman, M.; Chan, E.H.W.; Wong, M.S.; Irekponor, V.E.; Abdul-Rahman, M.O. A framework to simplify pre-processing location-based social media big data for sustainable urban planning and management. Cities 2021, 109, 102986. [Google Scholar] [CrossRef]
- Kandt, J.; Batty, M. Smart cities, big data and urban policy: Towards urban analytics for the long run. Cities 2021, 109, 102992. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y. Transit-based accessibility and urban development: An exploratory study of Shenzhen based on big and/or open data. Cities 2021, 110, 102990. [Google Scholar] [CrossRef]
- Van Wee, B.; Handy, S. Key research themes on urban space, scale, and sustainable urban mobility. Int. J. Sustain. Transp. 2016, 10, 18–24. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Stewart, T.J.; Janssen, R.; van Herwijnen, M. A genetic algorithm approach to multiobjective land use planning. Comput. Oper. Res. 2004, 31, 2293–2313. [Google Scholar] [CrossRef]
- Schwaab, J.; Deb, K.; Goodman, E.; Lautenbach, S.; van Strien, M.J.; Grêt-Regamey, A. Improving the performance of genetic algorithms for land-use allocation problems. Int. J. Geogr. Inf. Sci. 2018, 32, 907–930. [Google Scholar] [CrossRef]
- Feng, C.; Lin, J. Using a genetic algorithm to generate alternative sketch maps for urban planning. Comput. Environ. Urban Syst. 1999, 23, 91–108. [Google Scholar] [CrossRef]
- Li, X.; Parrott, L. An improved Genetic Algorithm for spatial optimization of multi-objective and multi-site land use allocation. Comput. Environ. Urban Syst. 2016, 59, 184–194. [Google Scholar] [CrossRef]
- Wey, W.; Zhang, H.; Chang, Y. Alternative transit-oriented development evaluation in sustainable built environment planning. Habitat Int. 2016, 55, 109–123. [Google Scholar] [CrossRef]
- Elgar, I.; Kennedy, C. Review of optimal transit subsidies: Comparison between models. J. Urban Plan. Dev. 2005, 131, 71–78. [Google Scholar] [CrossRef]
- Ding, C.; Cao, X.; Liu, C. How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds. J. Transp. Geogr. 2019, 77, 70–78. [Google Scholar] [CrossRef]
- Gan, Z.; Yang, M.; Feng, T.; Timmermans, H.J.P. Examining the relationship between built environment and metro ridership at station-to-station level. Transp. Res. Part D Transp. Environ. 2020, 82, 102332. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Cao, K.; Huang, B.; Wang, S.; Lin, H. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. Comput. Environ. Urban Syst. 2012, 36, 257–269. [Google Scholar] [CrossRef]
- Yuan, H.; He, Y.; Zhou, J.; Li, Y.; Cui, X.; Shen, Z. Research on compactness ratio model of urban underground space and compact development mechanism of rail transit station affected area. Sustain. Cities Soc. 2020, 55, 102043. [Google Scholar] [CrossRef]
- Newman, P.; Kenworthy, J. Sustainability and Cities: Overcoming Automobile Dependence; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Ewing, R.; Pendall, R.; Chen, D.D.T. Measuring Sprawl and Its Impact. Volume I. 2002. Available online: http://smartgrowthamerica.us/documents/MeasuringSprawlTechnical.pdf (accessed on 31 October 2020).
- Kotharkar, R.; Bahadure, P.; Sarda, N. Measuring Compact Urban Form: A Case of Nagpur City, India. Sustainability 2014, 6, 4246–4272. [Google Scholar] [CrossRef] [Green Version]
- Eom, S.; Suzuki, T.; Lee, M. A land-use mix allocation model considering adjacency, intensity, and proximity. Int. J. Geogr. Inf. Sci. 2020, 34, 899–923. [Google Scholar] [CrossRef]
- Manaugh, K.; Kreider, T. What is mixed use? Presenting an interaction method for measuring land use mix. J. Transp. Land Use 2013, 6, 63–72. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the Built Environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Standards for Environmental Protection Tax. 2017. Available online: http://www.shanghai.gov.cn/nw2/nw2314/nw2319/nw12344/u26aw54490.html?date=2017-12-22 (accessed on 31 October 2020).
- Technical Standards of Traffic Impact Analysis of Shanghai Construction Project. 2015. Available online: http://zjw.sh.gov.cn/jsgl/20180912/0011-26053.html (accessed on 31 October 2020).
- Rose, A.N.; McKee, J.J.; Urban, M.L.; Bright, E.A.; Sims, K.M. LandScan Global 2018 [Data Set]; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2019. [CrossRef]
- Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 1994, 5, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Test Problems for Evolutionary Multiobjective Optimization; Abraham, A., Jain, L., Goldberg, R., Eds.; Springer: London, UK, 2005. [Google Scholar]
- Comprehensive Plan and General Land-Use Plan of Pudong New Area, Shanghai. 2019. Available online: http://www.shanghai.gov.cn/nw2/nw2314/nw2319/nw12344/u26aw63249.html?phlnohdjmglngdbi (accessed on 31 October 2020).
Objective | Model | RMSE | |||
---|---|---|---|---|---|
Training | Test | Training | Test | ||
Ridership | Linear (OLS) | 0.64 | 0.53 | 1160 | 2543 |
Random Forest | 0.77 | 0.48 | 869 | 3190 | |
GBDT | 0.95 | 0.56 | 340 | 2484 | |
XGBoost | 0.96 | 0.61 | 330 | 2340 |
Algorithm | Solution | Ridership (Persons/Day) | Compactness | Land Use Conflict | Land Use Mix | Pollution Cost (RMB/Year) | Walking Distance (m) |
---|---|---|---|---|---|---|---|
NSGA-III | A | 129,418 | 1258 | 4.739 | 0.259 | ||
B | 59,073 | 1520 | 3.579 | 0.242 | |||
C | 56,554 | 1506 | 3.328 | 0.237 | |||
D | 73,299 | 1196 | 5.493 | 0.268 | |||
E | 53,369 | 1354 | 4.127 | 0.227 | |||
F | 50,381 | 1308 | 5.895 | 0.224 | |||
EGA | A | 126,273 | 1304 | 4.403 | 0.246 | ||
B | 56,381 | 1572 | 4.021 | 0.241 | |||
C | 66,794 | 1482 | 3.246 | 0.240 | |||
D | 66,886 | 1294 | 4.947 | 0.266 | |||
E | 56,950 | 1340 | 3.937 | 0.231 | |||
F | 44,823 | 1350 | 5.372 | 0.214 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, S.; Wang, Y.; Dou, M.; Gu, Y.; Zhang, P.; Gong, J. A Multiobjective Land Use Design Framework with Geo-Big Data for Station-Level Transit-Oriented Development Planning. ISPRS Int. J. Geo-Inf. 2022, 11, 364. https://doi.org/10.3390/ijgi11070364
Dong S, Wang Y, Dou M, Gu Y, Zhang P, Gong J. A Multiobjective Land Use Design Framework with Geo-Big Data for Station-Level Transit-Oriented Development Planning. ISPRS International Journal of Geo-Information. 2022; 11(7):364. https://doi.org/10.3390/ijgi11070364
Chicago/Turabian StyleDong, Shihai, Yandong Wang, Mingxuan Dou, Yanyan Gu, Peiqi Zhang, and Jianya Gong. 2022. "A Multiobjective Land Use Design Framework with Geo-Big Data for Station-Level Transit-Oriented Development Planning" ISPRS International Journal of Geo-Information 11, no. 7: 364. https://doi.org/10.3390/ijgi11070364
APA StyleDong, S., Wang, Y., Dou, M., Gu, Y., Zhang, P., & Gong, J. (2022). A Multiobjective Land Use Design Framework with Geo-Big Data for Station-Level Transit-Oriented Development Planning. ISPRS International Journal of Geo-Information, 11(7), 364. https://doi.org/10.3390/ijgi11070364