Effects of Terrain Parameters and Spatial Resolution of a Digital Elevation Model on the Calculation of Potential Solar Radiation in the Mountain Environment: A Case Study of the Tatra Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Experimental Design
2.4. Software Tools and Data Processing
3. Results
- (1)
- Differences in potential annual solar radiation calculated at resolutions of 10 m, 30 m, and 90 m compared to potential annual solar radiation calculated at a resolution of 5 m, supplemented by their statistical characteristics;
- (2)
- Correlations between absolute values of potential solar radiation differences and the terrain parameters to assess the influence of terrain fragmentation on the accuracy of the calculation of potential solar radiation;
- (3)
- Comparison of calculated and aggregated models of potential annual solar radiation;
- (4)
- The model of annual potential solar radiation in the Tatra Mountains with a cell size of 5 m (or 2 m), which is applicable in various spatial analyses.
3.1. Differences in Potential Annual Solar Radiation Calculated at Different Resolutions
3.2. Correlations between Absolute Values of Potential Solar Radiation Differences and the Terrain Parameters
3.3. Comparison of Calculated and Aggregated Models of Potential Annual Solar Radiation
3.4. Model of Annual Potential Solar Radiation in the Tatra Mountains with a Cell Size of 5 m
4. Discussion
5. Conclusions
- In mountainous areas, calculate potential solar radiation at as high a resolution as possible (in a flat area, this is not necessary);
- For spatial analysis in the Tatra Mountains, we recommend using the solar radiation model proposed in this study (Figure 5a, Supplementary Materials File S1) or its aggregation at a lower resolution.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solar Energy Technologies Office. Solar Radiation Basics. Available online: https://www.energy.gov/eere/solar/solar-radiation-basics (accessed on 16 December 2021).
- Fu, Q. Solar radiation. In Encyclopedia of Atmospheric Sciences; Holton, J., Pyle, J., Curry, J., Eds.; Academic Press: Amsterdam, The Netherlands, 2003; pp. 1859–1863. [Google Scholar]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Leuchner, M.; Hertel, C.; Rötzer, T.; Seifert, T.; Weigt, R.; Werner, H.; Menzel, A. Solar Radiation as a Driver for Growth and Competition in Forest Stands. In Growth and Defence in Plants. Ecological Studies (Analysis and Synthesis); Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J., Pretzsch, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 175–191. [Google Scholar] [CrossRef]
- Olpenda, A.S.; Stereńczak, K.; Będkowski, K. Modeling Solar Radiation in the Forest Using Remote Sensing Data: A Review of Approaches and Opportunities. Remote Sens. 2018, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Radiation (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100D); International Agency for Research on Cancer: Lyon, France, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK304362/ (accessed on 16 December 2021).
- Hofierka, J.; Cebecauer, T. Spatial interpolation of elevation data with variable density: A new methodology to derive quality DEMs. IEEE Geosci. Remote Sens. Lett. 2007, 4, 117–121. [Google Scholar] [CrossRef]
- Kausika, B.B.; van Sark, W.G.J.H.M. Calibration and validation of ArcGIS solar radiation tool for photovoltaic potential determination in the Netherlands. Energies 2021, 14, 1865. [Google Scholar] [CrossRef]
- Fuentes, J.E.; Moya, F.D.; Montoya, O.D. Method for Estimating Solar Energy Potential Based on Photogrammetry from Unmanned Aerial Vehicles. Electronics 2020, 9, 2144. [Google Scholar] [CrossRef]
- Tovar-Pescador, J.; Pozo-Vazquez, D.; Ruiz-Arias, J.A.; Batlles, J.; Lopez, G.; Bosch, J.L. On the use of the digital elevation model to estimate the solar radiation in areas of complex topography. Meteorol. Appl. 2006, 13, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Arnold, N.; Rees, G. Effects of digital elevation model spatial resolution on distributed calculations of solar radiation loading on a High Arctic glacier. J. Glaciol. 2009, 55, 973–984. [Google Scholar] [CrossRef] [Green Version]
- ESRI. ArcGIS Desktop. An Overview of the Solar Radiation Toolset. Available online: https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/an-overview-of-the-solar-radiation-tools.htm (accessed on 16 December 2021).
- ESRI. ArcGIS Desktop. Area Solar Radiation. Available online: https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/area-solar-radiation.htm (accessed on 16 December 2021).
- GRASS GIS 8.0.1dev Reference Manual r.sun—Solar Irradiance and Irradiation Model. Available online: https://grass.osgeo.org/grass80/manuals/r.sun.html (accessed on 16 December 2021).
- Hofierka, J.; Šúri, M. The solar radiation model for Open source GIS: Implementation and applications. In Proceedings of the Open Source GIS-GRASS Users Conference, Trento, Italy, 11–13 September 2002; p. 19. [Google Scholar]
- Fu, P.A. Geometric Solar Radiation Model with Applications in Landscape Ecology; University of Kansas: Lawrence, KS, USA, 2000. [Google Scholar]
- Fu, P.; Rich, P.M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 2002, 37, 25–35. [Google Scholar] [CrossRef]
- Fu, P.; Rich, P.M. The Solar Analyst 1.0 Manual; Helios Environmental Modeling Institute (HEMI); University of Kansas: Lawrence, KS, USA, 2000; p. 49. Available online: http://professorpaul.com/publications/fu_rich_2000_solaranalyst.pdf (accessed on 14 February 2022).
- Fu, P.; Rich, P.M. Design and implementation of the solar analyst: An ArcView extension for modeling solar radiation at landscape scales. In Proceedings of the 19th Annual ESRI User Conference, San Diego, CA, USA, 26–30 July 1999; pp. 1–33. Available online: http://www.esri.com/library/userconf/proc99/proceed/papers/pap867/p867.htm (accessed on 14 February 2022).
- Hetrick, W.A.; Rich, P.M.; Barnes, F.J.; Weiss, S.B. GIS-based solar radiation flux models. In American Society for Photogrammetry and Remote Sensing Technical Papers, Photogrammetry and Modeling; 1993; Volume 3, pp. 132–143. Available online: http://professorpaul.com/publications/hetrick_et_al_1993_asprs.pdf (accessed on 14 February 2022).
- Choi, Y.; Suh, J.; Kim, S.M. GIS-based solar radiation mapping, site evaluation, and potential assessment: A review. Appl. Sci. 2019, 9, 1960. [Google Scholar] [CrossRef] [Green Version]
- Šúri, M.; Hofierka, J. A new GIS-based solar radiation model and its application to photovoltaic assessments. Trans. GIS 2004, 8, 175–190. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Xie, X.; Sun, J. Solar3D: An open-source tool for estimating solar radiation in urban environments. ISPRS Int. J. Geo-Inf. 2020, 9, 524. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Zhou, J.; Ibrahim, A.N.; Li, M. An open-source 3D solar radiation model integrated with a 3D Geographic Information System. Environ. Model. Softw. 2015, 64, 94–101. [Google Scholar] [CrossRef]
- Hofierka, J.; Zlocha, M. A New 3-D Solar Radiation Model for 3-D City Models. Trans. GIS 2012, 16, 681–690. [Google Scholar] [CrossRef]
- Hofierka, J.; Kaňuk, J.; Gallay, M. The Spatial Distribution of Photovoltaic Power Plants in Relation to Solar Resource Potential: The Case of the Czech Republic and Slovakia. Morav. Geogr. Rep. 2014, 22, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Bolibok, L.; Brach, M. Application of LiDAR data for the modeling of solar radiation in forest artificial gaps-A case study. Forests 2020, 11, 821. [Google Scholar] [CrossRef]
- Kaňuk, J.; Zubal, S.; Šupinský, J.; Šašak, J.; Bombara, M.; Sedlák, V.; Gallay, M.; Hofierka, J.; & Onačillová, K. Testing of V3.sun module prototype for solar radiation modelling on 3D objects with complex geometric structure. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2019, 42, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Mezei, P.; Jakuš, R.; Blaženec, M.; Belánová, S.; Šmídt, J. The relationship between potential solar radiation and spruce bark beetle catches in pheromone traps. Ann. For. Res. 2012, 55, 243–252. Available online: https://afrjournal.org/index.php/afr/article/view/64 (accessed on 14 February 2022).
- Mezei, P.; Potterf, M.; Škvarenina, J.; Rasmussen, J.G.; Jakuš, R. Potential solar radiation as a driver for bark beetle infestation on a landscape scale. Forests 2019, 10, 604. [Google Scholar] [CrossRef] [Green Version]
- Van der Zande, D.; Stuckens, J.; Verstraeten, W.W.; Mereu, S.; Muys, B.; Coppin, P. 3D modeling of light interception in heterogeneous forest canopies using ground-based LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 792–800. [Google Scholar] [CrossRef]
- Redweik, P.M.; Catita, C.; Brito, M.C. 3D local scale solar radiation model based on urban LiDAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-4/W19, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Bode, C.A.; Limm, M.P.; Power, M.E.; Finlay, J.C. Subcanopy Solar Radiation model: Predicting solar radiation across a heavily vegetated landscape using LiDAR and GIS solar radiation models. Remote Sens. Environ. 2014, 154, 387–397. [Google Scholar] [CrossRef]
- Öhrn, P. The Spruce Bark Beetle Ips Typographus in a Changing Climate—Effects of Weather Conditions on the Biology of Ips Typographus. Introductory Research Essay No 18; Swedish University of Agricultural Sciencies: Uppsala, Sweden, 2012; p. 27. Available online: https://pub.epsilon.slu.se/8619/1/ohrn_p_120320.pdf (accessed on 14 February 2022).
- Mezei, P.; Grodzki, W.; Blaženec, M.; Jakuš, R. Factors influencing the wind-bark beetles’ disturbance system in the course of an Ips typographus outbreak in the Tatra Mountains. For. Ecol. Manag. 2014, 312, 67–77. [Google Scholar] [CrossRef]
- Chen, H.; Jackson, P.L. Spatiotemporal mapping of potential mountain pine beetle emergence—Is a heating cycle a valid surrogate for potential beetle emergence? Agric. For. Meteorol. 2015, 206, 124–136. [Google Scholar] [CrossRef]
- Jeníček, M.; Pevná, H.; Ondrejka, M. Canopy structure and topography effects on snow distribution at a catchment scale: Application of multivariate approaches. J. Hydrol. Hydromech. 2018, 66, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Sproull, G.J.; Adamus, M.; Bukowski, M.; Krzyzanowski, T.; Szewczyk, J.; Statwick, J.; Szwagrzyk, J. Tree and stand-level patterns and predictors of Norway spruce mortality caused by bark beetle infestation in the Tatra Mountains. For. Ecol. Manag. 2015, 354, 261–271. [Google Scholar] [CrossRef]
- Kissiyar, O.; Blaženec, M.; Jakuš, R.; Willekens, A.; Ježík, M.; Baláž, P.; Valckenborg, J.V.; Celer, S.; Fleischer, P. TANABBO model—A remote sensing based early warning system for forest decline and bark beetle outbreaks in Tatra Mts.—Overview. In GIS and Databases in the Forest Protection in Central Europe; Grodzki, W., Ed.; Centre of Exellence PROFEST at the Forest Research Institute: Warsaw, Poland, 2005; pp. 15–34. [Google Scholar]
- Jakuš, R.; Ježík, M.; Kissiyar, O.; Blaženec, M. Prognosis of bark beetle attack in TANABBO model. In GIS and Databases in the Forest Protection in Central Europe; Grodzki, W., Ed.; Centre of Exellence PROFEST at the Forest Research Institute: Warsaw, Poland, 2005; pp. 35–44. [Google Scholar]
- Rodriguez, E.; Morris, C.S.; Belz, J.E.; Chapin, E.C.; Martin, J.M.; Daffer, W.; Hensley, S. An Assessment of the SRTM Topographic Products; Technical Report JPL D-31639; Jet Propulsion Laboratory: Pasadena, CA, USA, 2005; p. 143. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Shuttle Radar Topography Mission (SRTM). Available online: https://www2.jpl.nasa.gov/srtm/ (accessed on 18 February 2022).
- UNESCO. Tatra Transboundary Biosphere Reserve, Poland/Slovakia. Available online: https://en.unesco.org/biosphere/eu-na/tatra (accessed on 21 February 2022).
- Geoportál. Airborne Laser Scanning and DTM 5.0. Available online: https://www.geoportal.sk/en/zbgis/als_dmr/ (accessed on 21 February 2022).
- OSM-Boundaries. Available online: https://osm-boundaries.com/ (accessed on 6 July 2022).
- OpenStreetMap. Copyright and Licence. Available online: https://www.openstreetmap.org/copyright/en (accessed on 6 July 2022).
- Slovak Hydrometeorological Institute. Available online: https://www.shmu.sk/en/ (accessed on 21 February 2022).
- Global Solar Atlas. Available online: https://globalsolaratlas.info (accessed on 21 February 2022).
- ZB GIS Map Client. Terrain. Available online: https://zbgis.skgeodesy.sk/mkzbgis/en/teren (accessed on 21 February 2022).
- Parameters for ALS Data Collection Lots. Available online: https://www.geoportal.sk/files/zbgis/lls/parameters-als-data-collection-lots.pdf (accessed on 21 February 2022).
- ESRI. ArcGIS Desktop. Resample. Available online: https://desktop.arcgis.com/en/arcmap/latest/tools/data-management-toolbox/resample.htm (accessed on 17 May 2022).
- Roberts, D.W. Ordination on the basis of fuzzy set theory. Vegetatio 1986, 66, 123–131. [Google Scholar] [CrossRef]
- Weiss, A.D. Topographic Position and Landforms Analysis. Available online: http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf (accessed on 21 February 2022).
- Jenness, J. Topographic Position Index (TPI) v. 1.2. (tpi_jen.avx). Available online: http://www.jennessent.com/downloads/tpi_documentation_online.pdf (accessed on 21 February 2022).
- ESRI. ArcGIS Desktop. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview (accessed on 21 February 2022).
- Gueymard, C.A. Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models. Sol. Energy 2012, 86, 2145–2169. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number | 26 |
Name | Tatras |
Area [km2] | 959 |
Scanning period | 7 June 2018–12 September 2018 |
Altitude accuracy of the point cloud in ETRS89-h (m) | 0.04 |
Position accuracy of the point cloud in ETRS89-TM-34 (m) | 0.17 |
Average density of points of the last reflection (points/m2) | 30 |
Altitude accuracy of DTM 5.0 in Bpv 1 (m) | 0.04 |
Input Parameter | Value |
---|---|
Latitude (°) | 49.21231 |
Sky size/resolution | 200 |
Day interval | 14 |
Hour interval | 2 |
Calculation directions | 32 |
Zenith divisions | 8 |
Diffuse model type | UNIFORM SKY |
Diffuse proportion | 0.3 |
Transmissivity | 0.5 |
Difference | Min | Max | Mean | RMSE |
---|---|---|---|---|
[Wh/m2] | [Wh/m2] | [Wh/m2] | [Wh/m2] | [Wh/m2] |
Δ5−10 1 | −1,084,673.1 | 969,098.8 | −5608.4 | 43,064.0 |
Δ5−30 1 | −1,316,829.5 | 1,083,598.8 | −18,166.1 | 75,813.2 |
Δ5−90 1 | −1,364,494.3 | 1,047,376.5 | −40,078.0 | 117,945.2 |
Terrain | |Δ5–10| 1 | |Δ5–30| 1 | |Δ5–90| 1 |
---|---|---|---|
Parameter | [Wh/m2] | [Wh/m2] | [Wh/m2] |
Elevation [m] | 0.22 | 0.24 | 0.26 |
|TPI1000| [m] | 0.10 | 0.10 | 0.11 |
|TPI500| [m] | 0.19 | 0.20 | 0.21 |
|TPI100| [m] | 0.25 | 0.29 | 0.33 |
|TPI50| [m] | 0.32 | 0.36 | 0.38 |
|TPI30| [m] | 0.39 | 0.41 | 0.40 |
|TPI10| [m] | 0.46 | 0.45 | 0.35 |
Northness | 0.17 | 0.17 | 0.18 |
Eastness | −0.01 | 0.00 | 0.01 |
Slope [°] | 0.31 | 0.35 | 0.38 |
|TPI50| | Number | RMSE5–10 | RMSE5–30 | RMSE5–90 |
---|---|---|---|---|
[m] | of Pixels | [Wh/m2] | [Wh/m2] | [Wh/m2] |
[0, 2) | 10,289,928 | 22,887.4 | 44,530.2 | 69,682.7 |
[2, 5) | 9,392,989 | 27,501.8 | 53,915.5 | 87,586.7 |
[5, 10) | 8,253,632 | 34,031.6 | 67,147.9 | 108,648.2 |
[10, 20) | 6,059,706 | 45,339.0 | 89,942.6 | 141,941.4 |
[20, 50) | 2,104,282 | 75,107.3 | 147,435.6 | 219,140.0 |
[50, 140) | 131,778 | 142,263.2 | 247,364.5 | 326,320.5 |
Processing | RMSE5–10 | RMSE5–30 | RMSE5–90 |
---|---|---|---|
Type | [Wh/m2] | [Wh/m2] | [Wh/m2] |
Calculation | 43,064.0 | 75,813.2 | 117,945.2 |
Aggregation | 27,775.4 | 59,499.5 | 92,648.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ďuračiová, R.; Pružinec, F. Effects of Terrain Parameters and Spatial Resolution of a Digital Elevation Model on the Calculation of Potential Solar Radiation in the Mountain Environment: A Case Study of the Tatra Mountains. ISPRS Int. J. Geo-Inf. 2022, 11, 389. https://doi.org/10.3390/ijgi11070389
Ďuračiová R, Pružinec F. Effects of Terrain Parameters and Spatial Resolution of a Digital Elevation Model on the Calculation of Potential Solar Radiation in the Mountain Environment: A Case Study of the Tatra Mountains. ISPRS International Journal of Geo-Information. 2022; 11(7):389. https://doi.org/10.3390/ijgi11070389
Chicago/Turabian StyleĎuračiová, Renata, and Filip Pružinec. 2022. "Effects of Terrain Parameters and Spatial Resolution of a Digital Elevation Model on the Calculation of Potential Solar Radiation in the Mountain Environment: A Case Study of the Tatra Mountains" ISPRS International Journal of Geo-Information 11, no. 7: 389. https://doi.org/10.3390/ijgi11070389
APA StyleĎuračiová, R., & Pružinec, F. (2022). Effects of Terrain Parameters and Spatial Resolution of a Digital Elevation Model on the Calculation of Potential Solar Radiation in the Mountain Environment: A Case Study of the Tatra Mountains. ISPRS International Journal of Geo-Information, 11(7), 389. https://doi.org/10.3390/ijgi11070389