Exploring the Spatial Heterogeneity and Driving Factors of UAV Logistics Network: Case Study of Hangzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Logistics Network Data
2.2.2. Driving Factor Data
2.3. Methods
2.3.1. Social Network Analysis
2.3.2. Kernel Density Estimation
2.3.3. Geodetector
3. Results
3.1. Spatial Distribution Pattern of UAV Logistics Network
3.2. The Detection of Factors Influencing UAV Logistics Network
3.2.1. City Scale
3.2.2. District Scale
3.3. The Interaction Influence between Factors
4. Discussion
4.1. Implication for UAV Logistics Planning
4.2. Impact of Regional Differences
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Škrinjar, J.P.; Škorput, P.; Furdić, M. Application of Unmanned Aerial Vehicles in Logistic Processes. In New Technologies, Development and Application; Springer International Publishing: Cham, Switzerland, 2019; pp. 359–366. [Google Scholar]
- Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks 2018, 72, 411–458. [Google Scholar] [CrossRef]
- Song, B.D.; Park, K.; Kim, J. Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput. Ind. Eng. 2018, 120, 418–428. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Ma, X.; Wang, X.; Zhou, Y. UAV-Aided Data Delivery Scheme Based on Opportunistic Virtual Intersections for Smart Transportation Networks. J. Adv. Transp. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Stolaroff, J.K.; Samaras, C.; O’Neill, E.R.; Lubers, A.; Mitchell, A.S.; Ceperley, D. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. Nat. Commun. 2018, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, A.; Toy, J. Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO2 emissions in the delivery service industry. Transp. Res. Part D Transp. Environ. 2018, 61, 58–67. [Google Scholar] [CrossRef]
- Holl, A.; Mariotti, I. The Geography of Logistics Firm Location: The Role of Accessibility. Netw. Spat. Econ. 2017, 18, 337–361. [Google Scholar] [CrossRef]
- McCarthy, T.; Pforte, L.; Burke, R. Fundamental Elements of an Urban UTM. Aerospace 2020, 7, 85. [Google Scholar] [CrossRef]
- Xu, C.; Liao, X.; Ye, H.; Yue, H. Iterative construction of low-altitude UAV air route network in urban areas: Case planning and assessment. J. Geogr. Sci. 2020, 30, 1534–1552. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, M.; Low, K.H. 3D path planning and real-time collision resolution of multirotor drone operations in complex urban low-altitude airspace. Transp. Res. Part C Emerg. Technol. 2021, 129, 103123. [Google Scholar] [CrossRef]
- Wang, Z.; Delahaye, D.; Farges, J.-L.; Alam, S. Complexity optimal air traffic assignment in multi-layer transport network for Urban Air Mobility operations. Transp. Res. Part C Emerg. Technol. 2022, 142, 103776. [Google Scholar] [CrossRef]
- Lagorio, A.; Pinto, R.; Golini, R. Research in urban logistics: A systematic literature review. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 908–931. [Google Scholar] [CrossRef]
- Mehmood, M.S.; Li, G.; Xue, S.; Nie, Q.; Ma, X.; Zafar, Z.; Rayit, A. Spatial Differentiation and Influencing Factors of Attended Collection and Delivery Points in Nanjing City, China. Int. J. Civ. Infrastruct. 2020, 3, 24–40. [Google Scholar] [CrossRef]
- Mehmood, M.S.; Li, G.; Jin, A.; Rehman, A.; Wijeratne, V.; Zafar, Z.; Khan, A.R.; Khan, F.A. The spatial coupling effect between urban street network’s centrality and collection & delivery points: A spatial design network analysis-based study. PLoS ONE 2021, 16, e0251093. [Google Scholar] [CrossRef]
- Sakai, T.; Kawamura, K.; Hyodo, T. Evaluation of the spatial pattern of logistics facilities using urban logistics land-use and traffic simulator. J. Transp. Geogr. 2019, 74, 145–160. [Google Scholar] [CrossRef]
- Curtis, C.; Scheurer, J. Planning for sustainable accessibility: Developing tools to aid discussion and decision-making. Prog. Plan. 2010, 74, 53–106. [Google Scholar] [CrossRef]
- Kelobonye, K.; Zhou, H.; McCarney, G.; Xia, J. Measuring the accessibility and spatial equity of urban services under competition using the cumulative opportunities measure. J. Transp. Geogr. 2020, 85, 102706. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Y.; Wu, Z.; Xing, L. An assessing framework for the proper allocation of collection and delivery points from the residents’ perspective. Res. Transp. Bus. Manag. 2021, 100776. [Google Scholar] [CrossRef]
- Vasić, N.; Kilibarda, M.; Andrejić, M.; Jović, S. Satisfaction is a function of users of logistics services in e-commerce. Technol. Anal. Strateg. Manag. 2021, 33, 813–828. [Google Scholar] [CrossRef]
- Yanık, S. Reverse Logistics Network Design under the Risk of Hazardous Materials Transportation. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 1277–1298. [Google Scholar] [CrossRef]
- Oliveira, L.K.d.; Oliveira, R.L.M.d.; Sousa, L.T.M.d.; Caliari, I.d.P.; Nascimento, C.d.O.L. Analysis of accessibility from collection and delivery points: Towards the sustainability of the e-commerce delivery. urbe. Rev. Bras. De Gestão Urbana 2019, 11, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Wen, Y.; Teo, K.L.; Liu, J.; Xu, F. Construction of Regional Logistics Weighted Network Model and Its Robust optimization: Evidence from China. Complexity 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Opasanon, S.; Lertsanti, P. Impact analysis of logistics facility relocation using the analytic hierarchy process (AHP). Int. Trans. Oper. Res. 2013, 20, 325–339. [Google Scholar] [CrossRef]
- Çakmak, E.; Önden, İ.; Acar, A.Z.; Eldemir, F. Analyzing the location of city logistics centers in Istanbul by integrating Geographic Information Systems with Binary Particle Swarm Optimization algorithm. Case Stud. Transp. Policy 2021, 9, 59–67. [Google Scholar] [CrossRef]
- Li, M.; Wang, J. Spatial-temporal evolution and influencing factors of total factor productivity in China’s logistics industry under low-carbon constraints. Environ. Sci. Pollut. Res. 2022, 29, 883–900. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Zhang, R.; Cao, Y.; Li, M.; Zikirya, B.; Zhou, C. Heterogeneity of Spatial Distribution and Factors Influencing Unattended Locker Points in Guangzhou, China: The Case of Hive Box. ISPRS Int. J. Geo-Inf. 2021, 10, 409. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Gao, F.; Li, S.; Tan, Z.; Wu, Z.; Zhang, X.; Huang, G.; Huang, Z. Understanding the modifiable areal unit problem in dockless bike sharing usage and exploring the interactive effects of built environment factors. Int. J. Geogr. Inf. Sci. 2021, 35, 1905–1925. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, Y.; He, B.; Nie, K.; Tu, W.; Du, Q.; Li, Q. A Bayesian spatio-temporal model to analyzing the stability of patterns of population distribution in an urban space using mobile phone data. Int. J. Geogr. Inf. Sci. 2020, 35, 116–134. [Google Scholar] [CrossRef]
- Xu, C.; Liao, X.; Tan, J.; Ye, H.; Lu, H. Recent Research Progress of Unmanned Aerial Vehicle Regulation Policies and Technologies in Urban Low Altitude. IEEE Access 2020, 8, 74175–74194. [Google Scholar] [CrossRef]
- Aurambout, J.-P.; Gkoumas, K.; Ciuffo, B. Last mile delivery by drones: An estimation of viable market potential and access to citizens across European cities. Eur. Transp. Res. Rev. 2019, 11, 30–51. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Li, C.; Liu, Y.; Zhang, J. Complexity of Functional Urban Spaces Evolution in Different Aspects: Based on Urban Land Use Conversion. Complexity 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Kuru, K.; Ansell, D.; Khan, W.; Yetgin, H. Analysis and Optimization of Unmanned Aerial Vehicle Swarms in Logistics: An Intelligent Delivery Platform. IEEE Access 2019, 7, 15804–15831. [Google Scholar] [CrossRef]
- Bondarenko, M.; Kerr, D.; Sorichetta, A.; Tatem, A.; WorldPop. Census/Projection-Disaggregated Gridded Population Datasets, Adjusted to Match the Corresponding UNPD 2020 Estimates, for 51 Countries Across Sub-Saharan Africa Using Building Footprints; University of Southampton: Southampton, UK, 2020. [Google Scholar]
- Ma, T.; Zhou, C.H.; Pei, T.; Haynie, S.; Fan, J.F. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Wu, C.; Ye, X.; Ren, F.; Du, Q. Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China. Cities 2018, 77, 104–116. [Google Scholar] [CrossRef]
- Zhao, P.X.; Liu, X.T.; Shi, W.Z.; Jia, T.; Li, W.G.; Chen, M. An empirical study on the intra-urban goods movement patterns using logistics big data. Int. J. Geogr. Inf. Sci. 2020, 34, 1089–1116. [Google Scholar] [CrossRef]
- Zou, X.; Somenahalli, S.; Scrafton, D. Evaluation and analysis of urban logistics competitiveness and spatial evolution. Int. J. Logist. Res. Appl. 2020, 23, 493–507. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, J.; Li, H.; Yang, P.; Zhou, L. Optimizing the design of an intra-city metro logistics system based on a hub-and-spoke network model. Tunn. Undergr. Space Technol. 2021, 116, 104086. [Google Scholar] [CrossRef]
- Okabe, A.; Satoh, T.; Sugihara, K. A kernel density estimation method for networks, its computational method and a GIS-based tool. Int. J. Geogr. Inf. Sci. 2009, 23, 7–32. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, H.; Pan, J.; Si, Y.; Law, R.; Zhang, M. Spatial Distribution Pattern and Influencing Factors of Sports Tourism Resources in China. ISPRS Int. J. Geo-Inf. 2021, 10, 428. [Google Scholar] [CrossRef]
- He, M.; Shen, J.; Wu, X.; Luo, J. Logistics Space: A Literature Review from the Sustainability Perspective. Sustainability 2018, 10, 2815. [Google Scholar] [CrossRef] [Green Version]
- Morganti, E.; Dablanc, L.; Fortin, F. Final deliveries for online shopping: The deployment of pickup point networks in urban and suburban areas. Res. Transp. Bus. Manag. 2014, 11, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Rosser, J.C., Jr.; Vignesh, V.; Terwilliger, B.A.; Parker, B.C. Surgical and Medical Applications of Drones: A Comprehensive Review. J. Soc. Laparosc. Robot. Surg. 2018, 22, e2018.00018. [Google Scholar] [CrossRef] [Green Version]
- Bauranov, A.; Rakas, J. Designing airspace for urban air mobility: A review of concepts and approaches. Prog. Aerosp. Sci. 2021, 125, 100726. [Google Scholar] [CrossRef]
- Sakai, T.; Kawamura, K.; Hyodo, T. Logistics facilities for intra and inter-regional shipping: Spatial distributions, location choice factors, and externality. J. Transp. Geogr. 2020, 86, 102783. [Google Scholar] [CrossRef]
Factor | Description |
---|---|
X1: population density | Population density values (people/km2) |
X2: residential land density | Residential land use POI kernel density values (POI/km2) |
X3: building density | Percentage of building area within the grid unit (%) |
X4: road density | Total length of roads in grid unit (km/km2) |
X5: 5G base station density | 5G base station kernel density values (POI/km2) |
X6: night light intensity | ) |
X7: business service capability | Business service POI kernel density values (POI/km2) |
X8: consumption vitality | Index calculated based on the weighted density of the five POI core categories: dining, shopping, living, sports and leisure, and accommodation services, and finally normalized |
X9: housing price | Average value of house price POI data by township-level administrative block (RMB) |
X10: medical facility density | Medical facility POI (pharmacies, clinics, hospitals at all levels) kernel density values (POI/km2) |
Y: kernel density of UAV logistics network | Indicators of explanatory variables calculated using the weighted KDE method based on UAV logistics network data |
Description | Interaction Type |
---|---|
Non-linear reduction | |
Single-factor nonlinearity reduction | |
Two-factor enhancement | |
Independent | |
Nonlinear enhancement |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Ye, H.; Xu, C.; Liao, X. Exploring the Spatial Heterogeneity and Driving Factors of UAV Logistics Network: Case Study of Hangzhou, China. ISPRS Int. J. Geo-Inf. 2022, 11, 419. https://doi.org/10.3390/ijgi11080419
He H, Ye H, Xu C, Liao X. Exploring the Spatial Heterogeneity and Driving Factors of UAV Logistics Network: Case Study of Hangzhou, China. ISPRS International Journal of Geo-Information. 2022; 11(8):419. https://doi.org/10.3390/ijgi11080419
Chicago/Turabian StyleHe, Hongbo, Huping Ye, Chenchen Xu, and Xiaohan Liao. 2022. "Exploring the Spatial Heterogeneity and Driving Factors of UAV Logistics Network: Case Study of Hangzhou, China" ISPRS International Journal of Geo-Information 11, no. 8: 419. https://doi.org/10.3390/ijgi11080419