Exploring Landscape Composition Using 2D and 3D Open Urban Vectorial Data
Abstract
:1. Introduction
2. Previous Scientific Works in Respect to Users’ Needs
- the need for precise geometrical analysis, which requires the use of a 3D vector city model instead of simplified DEM or rasters,
- the need for semantic data to identify as precisely as possible which feature is seen from a vantage point; if a building or landmark is concerned by the visual impact of a proposed building (concerned only by its roof or its facades and which floors may be impacted, etc.),
- the need to be able to process large amounts of data, and especially rich, 3D vector data so as to obtain precise results on any area (a whole metropolis or region if needed),
- the need for numerous outputs that can be used to generate multiple results (images, georeferenced databases and data quantification stored in spreadsheets), some of which may be used as is and others opening possibilities in terms of spatial analysis (i.e., interaction with other georeferenced data in GIS tools), depending on the end users’ objectives and their technical capabilities,
- the need for a generic approach for processing various city models with different types of city objects,
- the need for open-source tools that can be widely used by any stakeholder,
- the need to ensure replicability with the use of standards.
3. Measuring the Visual Composition of an Urban Landscape
3.1. Field of View Description (Step A)
3.2. Intersecting Objects in the 3D Scene (Step B)
3.3. Proposed Data Structure for a Large-Scale Study
3.4. Generating the Database (Step C and D)
4. Applications for Skyline Assessments in the Lyon Metropolitan Area
4.1. Data Used for Our Study
4.2. Geometrical Accuracy for a More Precise Description of the Skyline
4.2.1. Characterization of Geometrical Accuracy for the Visual Impact Assessment of a Specific Building
4.2.2. Quantitative Analysis of the Gain in Geometrical Accuracy
4.3. Example of Uses of the Data Produced by Our Tool
4.4. GIS Analysis of 3D Georeferenced Results
4.4.1. Visual Impact of Buildings in Context
4.4.2. Detecting the Visibility of a Building from Vantage Points
4.5. Outlook: Use of Images Produced by Our Tools for the Visual Analysis of High-Rise Projects and Their Impact on the Skyline
4.6. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polonsky, O.; Patané, G.; Biasotti, S.; Gotsman, C.; Spagnuolo, M. What’s in an image? Towards the computation of the “best” view of an object. Vis. Comput. 2005, 21, 840–847. [Google Scholar] [CrossRef]
- ISO Technical Committee 211 Geographic Information/Geomatics. ISO 19107:2019. 2019. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/61/66175.html (accessed on 24 August 2022).
- Engel, J.; Döllner, J. Approaches Towards Visual 3D Analysis for Digital Landscapes and Its Applications. Digit. Landsc. Archit. Proc. 2009, 2009, 33–41. [Google Scholar]
- O’Sullivan, D.; Turner, A. Visibility graphs and landscape visibility analysis. Int. J. Geogr. Inf. Sci. 2001, 15, 221–237. [Google Scholar] [CrossRef]
- Labib, S.; Huck, J.J.; Lindley, S. Modelling and mapping eye-level greenness visibility exposure using multi-source data at high spatial resolutions. Sci. Total Environ. 2021, 755, 143050. [Google Scholar] [CrossRef]
- Esch, T.; Asamer, H.; Bachofer, F.; Balhar, J.; Boettcher, M.; Boissier, E.; d’ Angelo, P.; Gevaert, C.M.; Hirner, A.; Jupova, K.; et al. Digital world meets urban planet—New prospects for evidence-based urban studies arising from joint exploitation of big earth data, information technology and shared knowledge. Int. J. Digit. Earth 2020, 13, 136–157. [Google Scholar] [CrossRef]
- Foltête, J.C.; Ingensand, J.; Blanc, N. Coupling crowd-sourced imagery and visibility modelling to identify landscape preferences at the panorama level. Landsc. Urban Plan. 2020, 197, 103756. [Google Scholar] [CrossRef]
- Shang, M.; Wang, S.; Zhou, Y.; Du, C.; Liu, W. Object-based image analysis of suburban landscapes using Landsat-8 imagery. Int. J. Digit. Earth 2019, 12, 720–736. [Google Scholar] [CrossRef]
- Drozdz, M.; Appert, M.; Harris, A. High-rise urbanism in contemporary Europe. Built Environ. 2018, 43, 469–480. [Google Scholar] [CrossRef]
- Nijhuis, S. GIS-based Landscape Design Research: Exploring Aspects of Visibility in Landscape Architectonic Compositions. In Geodesign by Integrating Design and Geospatial Sciences; Lee, D.J., Dias, E., Scholten, H.J., Eds.; Springer International Publishing: Cham, Switerland, 2014; pp. 193–217. [Google Scholar] [CrossRef]
- Nijhuis, S. Applications of GIS in landscape design research. Res. Urban. Ser. 2016, 4, 43–56. [Google Scholar] [CrossRef]
- Cassatella, C.; Voghera, A. Indicators Used for Landscape. In Landscape Indicators: Assessing and Monitoring Landscape Quality; Cassatella, C., Peano, A., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 31–46. [Google Scholar] [CrossRef]
- Rosa, D.L. The observed landscape: Map of visible landscape values in the province of Enna (Italy). J. Maps 2011, 7, 291–303. [Google Scholar] [CrossRef]
- Nutsford, D.; Reitsma, F.; Pearson, A.L.; Kingham, S. Personalising the viewshed: Visibility analysis from the human perspective. Appl. Geogr. 2015, 62, 1–7. [Google Scholar] [CrossRef]
- Hernández, J.; García, L.; Ayuga, F. Assessment of the visual impact made on the landscape by new buildings: A methodology for site selection. Landsc. Urban Plan. 2004, 68, 15–28. [Google Scholar] [CrossRef]
- La Fabrique du Paysage Métropolitain 2—Au Coeur de l’agglomération Parisienne, Quels Outils Pour Une Gestion Commune du Grand Paysage? 2014. Available online: https://www.apur.org/fr/nos-travaux/fabrique-paysage-metropolitain-2-coeur-agglomeration-parisienne-outils-une-gestion-commune-grand-paysage (accessed on 7 September 2022).
- Jaillot, V.; Rigolle, V.; Servigne, S.; Samuel, J.; Gesquière, G. Integrating multimedia documents and time-evolving 3D city models for web visualization and navigation. Trans. GIS 2021, 25, 1419–1438. [Google Scholar] [CrossRef]
- Appert, M. Ville globale versus ville patrimoniale? Des tensions entre libéralisation de la skyline de Londres et préservation des vues historiques. Rev. Géograph. l’Est 2008, 48, 1–2. [Google Scholar] [CrossRef]
- Harris, A. Livingstone versus Serota: The High-rise Battle of Bankside. Lond. J. 2008, 33, 289–299. [Google Scholar] [CrossRef]
- Appert, M.; Montes, C. Skyscrapers and the redrawing of the London skyline: A case of territorialisation through landscape control. Articulo 2015, 18. [Google Scholar] [CrossRef]
- Montanari, G. Privatizing the sky? Tall buildings in the historical urban landscape: The case of Turin. Géocarrefour 2017, 91. [Google Scholar] [CrossRef]
- Dixon, M. Gazprom versus the Skyline: Spatial Displacement and Social Contention in St. Petersburg. Int. J. Urban Reg. Res. 2010, 34, 35–54. [Google Scholar] [CrossRef]
- Puspitasari, A.W.; Kwon, J. A reliable method for visibility analysis of tall buildings and skyline: A case study of tall buildings cluster in Jakarta. J. Asian Archit. Build. Eng. 2021, 20, 356–367. [Google Scholar] [CrossRef]
- Bornaetxea, T.; Marchesini, I. r.survey: A tool for calculating visibility of variable-size objects based on orientation. Int. J. Geogr. Inf. Sci. 2021, 36, 429–452. [Google Scholar] [CrossRef]
- Peng, Y.; Nijhuis, S.; Zhang, G. Towards a Practical Method for Voxel-Based Visibility Analysis with Point Cloud Data for Landscape Architects: Jichang Garden (Wuxi, China) as an Example; Wichmann Verlag: Berlin, Germany, 2022. [Google Scholar]
- Leduc, T.; Chaillou, F.; Ouard, T. Towards a “typification” of the Pedestrian Surrounding Space: Analysis of the Isovist Using Digital processing Method. In Advancing Geoinformation Science for a Changing World; Geertman, S., Reinhardt, W., Toppen, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 275–292. [Google Scholar] [CrossRef]
- Weitkamp, G. Mapping landscape openness with isovists. In Exploring the Visual Landscape: Avances in Physiognomic Landscape Research in The Netherlands; IOS Press: Berlin, Germany, 2011; pp. 205–224. [Google Scholar] [CrossRef]
- Benedikt, M.L. To Take Hold of Space: Isovists and Isovist Fields. Environ. Plan. Plan. Des. 1979, 6, 47–65. [Google Scholar] [CrossRef]
- Bartie, P.; Reitsma, F.; Kingham, S.; Mills, S. Advancing visibility modelling algorithms for urban environments. Comput. Environ. Urban Syst. 2010, 34, 518–531. [Google Scholar] [CrossRef]
- Yang, P.P.J.; Putra, S.Y.; Li, W. Viewsphere: A GIS-Based 3D Visibility Analysis for Urban Design Evaluation. Environ. Plan. Plan. Des. 2007, 34, 971–992. [Google Scholar] [CrossRef]
- CAHA, J. Line of Sight Analyst: ArcGIS Python Toolbox for visibility analyses. Geogr. Cassoviensis 2018, 12. Available online: https://uge-share.science.upjs.sk/webshared/GCass_web_files/articles/GC-2018-12-1/2018_1_Caha.pdf (accessed on 7 September 2022).
- Ruzickova, K.; Ruzicka, J.; Bitta, J. A new GIS-compatible methodology for visibility analysis in digital surface models of earth sites. Geosci. Front. 2021, 12, 101109. [Google Scholar] [CrossRef]
- Cortésa, F.G.; Leducb, T. GGL: A geo-processing definition language that enhance spatial SQL with parameterization. In Proceedings of the 13th AGILE International Conference on Geographic Information Science, Guimarães, Portugal, 11–14 May 2010. [Google Scholar]
- Rana, S. Isovist Analyst—An Arcview extension for planning visual surveillance. In Proceedings of the ESRI International User Conference, San Diego, CA, USA, 10 August 2006. [Google Scholar]
- Suleiman, W.; Joliveau, T.; Favier, E. Une nouvelle méthode de calcul d’isovist en 2 et 3 dimensions. In Proceedings of the Actes de la Conférence Internationale de Géomatique et Analyse Spatiale-SAGEO, Liège, Belgium, 6–9 November 2012; pp. 366–386. [Google Scholar]
- Biljecki, F.; Stoter, J.; Ledoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D City Models: State of the Art Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842–2889. [Google Scholar] [CrossRef]
- Mericskay, B. Cartographie en Ligne et Planification Participative: Analyse des Usages du géoweb et d’Internet dans le débat Public à travers le cas de la Ville de Québec. Ph.D. Thesis, Université Laval, Quebec City, QC, Canada, 2013. [Google Scholar]
- Morello, E.; Ratti, C. A Digital Image of the City: 3D Isovists in Lynch’s Urban Analysis. Environ. Plan. Plan. Des. 2009, 36, 837–853. [Google Scholar] [CrossRef]
- Suleiman, W.; Joliveau, T.; Favier, E. A New Algorithm for 3D Isovists. In Advances in Spatial Data Handling: Geospatial Dynamics, Geosimulation and Exploratory Visualization; Timpf, S., Laube, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 157–173. [Google Scholar] [CrossRef]
- Caldwell, D.; Mineter, M.; Dowers, S.; Gittings, B. Analysis and visualization of visibility surfaces. In Proceedings of the 7th International Conference on GeoComputation, Southampton, UK, 8–10 September 2003; University of Southampton: Southampton, UK, 2003. Available online: http://www.geocomputation.org/2003/ (accessed on 9 September 2022).
- Llobera, M. Extending GIS-based visual analysis: The concept of visualscapes. Int. J. Geogr. Inf. Sci. 2003, 17, 25–48. [Google Scholar] [CrossRef]
- Choudhury, F.M.; Ali, M.E.; Masud, S.; Nath, S.; Rabban, I.E. Scalable visibility color map construction in spatial databases. Inf. Syst. 2014, 42, 89–106. [Google Scholar] [CrossRef]
- Rabban, I.E.; Abdullah, K.; Ali, M.E.; Cheema, M.A. Visibility Color Map for a Fixed or Moving Target in Spatial Databases. In Proceedings of the Advances in Spatial and Temporal Databases; Claramunt, C., Schneider, M., Wong, R.C.W., Xiong, L., Loh, W.K., Shahabi, C., Li, K.J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 197–215. [Google Scholar]
- Czyńska, K. Application of Lidar Data and 3D-City Models in Visual Impact Simulations of Tall Buildings. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2015, XL-7/W3, 1359–1366. [Google Scholar] [CrossRef]
- Danese, M.; Nolè, G.; Murgante, B. Visual Impact Assessment in Urban Planning. In Geocomputation and Urban Planning; Murgante, B., Borruso, G., Lapucci, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 133–146. [Google Scholar] [CrossRef]
- Wandell, B.; Thomas, S. Foundations of Vision. Psyccritiques 1997, 42, 1–61. [Google Scholar]
- Riggs, L.A. Visual acuity. In Vision and Visual Perception; John Wiley and Sons, Inc.: New York, NY, USA, 1965; pp. 321–349. [Google Scholar]
- Pedrinis, F. Représentations et Dynamique de la Ville Virtuelle. (Representations and Dynamics of the Virtual City). Ph.D. Thesis, Lumière University Lyon 2, Lyon, France, 2017. [Google Scholar]
- Watson, I.D.; Johnson, G.T. Graphical estimation of sky view-factors in urban environments. J. Climatol. 1987, 7, 193–197. [Google Scholar] [CrossRef]
- Brown, M.J.; Grimmond, S.; Ratti, C. Comparison of Methodologies for Computing Sky View Factor in Urban Environments; Technical Report LA-UR-01-4107; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2001. [Google Scholar]
- Parker, J.; Sharratt, M.; Richmond, J. The Shard, London, UK: Response of arches to ground movements. In Proceedings of the Institution of Civil Engineers-Bridge Engineering; Thomas Telford Ltd.: London, UK, 2012; Volume 165, pp. 185–194. [Google Scholar] [CrossRef]
- Chaturvedi, K.; Smyth, C.S.; Gesquière, G.; Kutzner, T.; Kolbe, T.H. Managing Versions and History within Semantic 3D City Models for the Next Generation of CityGML. In Advances in 3D Geoinformation; Abdul-Rahman, A., Ed.; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2017; pp. 191–206. [Google Scholar] [CrossRef]
- Samuel, J.; Servigne, S.; Gesquière, G. Representation of concurrent points of view of urban changes for city models. J. Geogr. Syst. 2020, 22, 335–359. [Google Scholar] [CrossRef]
Type of Object | Number of Triangles |
---|---|
Building | 118,948 |
Terrain | 26,785 |
Road | 17,800 |
Vegetation | 73,142 |
Total | 236,675 |
Gross Comparison of Results | Comparison of Results by Adding a Buffer of 1 m to the Results of Our Tool | Comparison for Points beyond 1 km from Viewpoint | |
---|---|---|---|
Number of points from our tool | 650,048 | 650,048 | 47,491 |
Number of points that are also part of the areas considered visible by the GIS visibility analysis | 415,976 | 497,068 | 44,262 |
Difference (points not considered as visible by GIS analysis) | 234,072 | 152,980 | 3229 |
Percentage difference | 36% | 23.5% | 7% |
Fourvière Basilica | City Hall | Opera | Saint-Jean Cathedral | Part-Dieu Tower | |
---|---|---|---|---|---|
Number of points from our tool | 650,048 | 683,096 | 680,978 | 712,178 | 640,821 |
Number of points that are also part of the areas considered visible by the GIS visibility analysis | 415,976 | 395,146 | 488,047 | 304,519 | 570,783 |
Difference (points not considered as visible by GIS analysis) | 234,072 | 287,950 | 192,931 | 407,659 | 70,038 |
Percentage difference | 36% | 42.20% | 28.30% | 57.24% | 11% |
Fourvière Basilica | City Hall | Opera | Saint-Jean Cathedral | Part-Dieu Tower | |
---|---|---|---|---|---|
Number of points from our tool | 650,048 | 683,096 | 680,978 | 712,178 | 640,821 |
Number of points that are also part of the areas considered visible by the GIS visibility analysis | 497,068 | 449,269 | 552,247 | 364,803 | 625,114 |
Difference (points not considered as visible by GIS analysis) | 152,980 | 233,827 | 128,731 | 347,375 | 15,707 |
Percentage difference | 23.5% | 34.23% | 18.90% | 48.78% | 2% |
Fourvière Basilica | City Hall | Opera | Saint-Jean Cathedral | Part-Dieu Tower | |
---|---|---|---|---|---|
Number of points from our tool | 47,491 | 11,102 | 12,091 | 6702 | 49,197 |
Number of points that are also part of the areas considered visible by the GIS visibility analysis | 44,262 | 11,102 | 12,091 | 6702 | 46,192 |
Difference (points not considered as visible by GIS analysis) | 3229 | 0 | 0 | 0 | 3005 |
Percentage difference | 7% | 0.00% | 0.00% | 0.00% | 6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrinis, F.; Samuel, J.; Appert, M.; Jacquinod, F.; Gesquière, G. Exploring Landscape Composition Using 2D and 3D Open Urban Vectorial Data. ISPRS Int. J. Geo-Inf. 2022, 11, 479. https://doi.org/10.3390/ijgi11090479
Pedrinis F, Samuel J, Appert M, Jacquinod F, Gesquière G. Exploring Landscape Composition Using 2D and 3D Open Urban Vectorial Data. ISPRS International Journal of Geo-Information. 2022; 11(9):479. https://doi.org/10.3390/ijgi11090479
Chicago/Turabian StylePedrinis, Frédéric, John Samuel, Manuel Appert, Florence Jacquinod, and Gilles Gesquière. 2022. "Exploring Landscape Composition Using 2D and 3D Open Urban Vectorial Data" ISPRS International Journal of Geo-Information 11, no. 9: 479. https://doi.org/10.3390/ijgi11090479
APA StylePedrinis, F., Samuel, J., Appert, M., Jacquinod, F., & Gesquière, G. (2022). Exploring Landscape Composition Using 2D and 3D Open Urban Vectorial Data. ISPRS International Journal of Geo-Information, 11(9), 479. https://doi.org/10.3390/ijgi11090479