A Comparative Study of Various Deep Learning Approaches to Shape Encoding of Planar Geospatial Objects
Abstract
:1. Introduction
2. Methodology
2.1. Pixel-Based Shape Coding Model
2.2. Sequence-Based Shape Encoding Model
2.3. Graph-Based Shape Autoencoder
3. Experimental Results and Analysis
3.1. Experimental Datasets
3.2. Experimental Results and Analysis
3.2.1. Quantitative Evaluation
3.2.2. Visualization Analysis
3.2.3. Similarity Measurements between Shape Pairs
3.3. Discussions on the Coding Dimension
3.4. Tests with a More Complex Dataset
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klettner, S. Affective communication of map symbols: A semantic differential analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 289. [Google Scholar] [CrossRef]
- Klettner, S. Why shape matters—On the inherent qualities of geometric shapes for cartographic representations. ISPRS Int. J. Geo-Inf. 2019, 8, 217. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Ai, T.; Yang, M.; Tong, X. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps. Int. J. Geogr. Inf. Sci. 2021, 35, 490–512. [Google Scholar] [CrossRef]
- Samsonov, T.E.; Yakimova, O.P. Shape-adaptive geometric simplification of heterogeneous line datasets. Int. J. Geogr. Inf. Sci. 2017, 31, 1485–1520. [Google Scholar] [CrossRef]
- Yan, X.; Ai, T.; Zhang, X. Template matching and simplification method for building features based on shape cognition. ISPRS Int. J. Geo-Inf. 2017, 6, 250. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Yuan, T.; Yan, X.; Ai, T.; Jiang, C. A hybrid approach to building simplification with an evaluator from a backpropagation neural network. Int. J. Geogr. Inf. Sci. 2022, 36, 280–309. [Google Scholar] [CrossRef]
- Yan, X.; Ai, T.; Yang, M.; Yin, H. A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS J. Photogramm. Remote Sens. 2019, 150, 259–273. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, C.; Yan, X.; Ai, T.; Cao, M.; Chen, W. Detecting interchanges in road networks using a graph convolutional network approach. Int. J. Geogr. Inf. Sci. 2022, 36, 1119–1139. [Google Scholar] [CrossRef]
- Ai, T.; Cheng, X.; Liu, P.; Yang, M. A shape analysis and template matching of building features by the Fourier transform method. Comput. Environ. Urban Syst. 2013, 41, 219–233. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, Z.; Li, W. Towards measuring shape similarity of polygons based on multiscale features and grid context descriptors. ISPRS Int. J. Geo-Inf. 2021, 10, 279. [Google Scholar] [CrossRef]
- Belongie, S.; Malik, J.; Puzicha, J. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 24, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Mark, D.M.; Freksa, C.; Hirtle, S.C.; Lloyd, R.; Tversky, B. Cognitive models of geographical space. Int. J. Geogr. Inf. Sci. 1999, 13, 747–774. [Google Scholar] [CrossRef]
- Basaraner, M.; Cetinkaya, S. Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS. Inter. J. Geogr. Infor. Sci. 2017, 31, 1952–1977. [Google Scholar] [CrossRef]
- Wei, Z.; Guo, Q.; Wang, L.; Yan, F. On the spatial distribution of buildings for map generalization. Cartogr. Geogr. Infor. Sci. 2018, 45, 539–555. [Google Scholar] [CrossRef]
- Li, W.; Goodchild, M.F.; Church, R. An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. Int. J. Geogr. Inf. Sci. 2013, 27, 1227–1250. [Google Scholar] [CrossRef] [Green Version]
- Akgül, C.B.; Sankur, B.; Yemez, Y.; Schmitt, F. 3D model retrieval using probability density-based shape descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1117–1133. [Google Scholar] [CrossRef] [Green Version]
- Kunttu, I.; Lepisto, L.; Rauhamaa, J.; Visa, A. Multiscale Fourier descriptor for shape-based image retrieval. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 23–26 August 2004; pp. 765–768. [Google Scholar] [CrossRef]
- Sundar, H.; Silver, D.; Gagvani, N.; Dickinson, S. Skeleton based shape matching and retrieval. In Proceedings of the International Conference on Shape Modeling and Applications, Seoul, Korea, 12–15 May 2003; pp. 130–139. [Google Scholar] [CrossRef]
- Arkin, E.M.; Chew, L.P.; Huttenlocher, D.P.; Kedem, K.; Mitchell, J.S. An efficiently computable metric for comparing polygonal shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Adamek, T.; O’connor, N.E. A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 742–753. [Google Scholar] [CrossRef]
- Yang, C.; Wei, H.; Yu, Q. A novel method for 2D nonrigid partial shape matching. Neurocomputing 2018, 275, 1160–1176. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; pp. 505–527. [Google Scholar]
- Bei, W.; Guo, M.; Huang, Y. A spatial adaptive algorithm framework for building pattern recognition using graph convolutional networks. Sensors 2019, 19, 5518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtial, A.; El Ayedi, A.; Touya, G.; Zhang, X. Exploring the potential of deep learning segmentation for mountain roads generalisation. ISPRS Int. J. Geo-Inf. 2020, 9, 338. [Google Scholar] [CrossRef]
- Feng, Y.; Thiemann, F.; Sester, M. Learning cartographic building generalization with deep convolutional neural networks. ISPRS Int. J. Geo-Inf. 2019, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Cheng, X.; Zhang, F.; Yao, X.; Gao, Y.; Liu, Y. Spatial interpolation using conditional generative adversarial neural networks. Int. J. Geogr. Inf. Sci. 2020, 34, 735–758. [Google Scholar] [CrossRef]
- Ritter, S.; Barrett, D.G.; Santoro, A.; Botvinick, M.M. Cognitive psychology for deep neural networks: A shape bias case study. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2940–2949. Available online: https://arxiv.org/abs/1706.08606 (accessed on 12 March 2022).
- Liu, C.; Hu, Y.; Li, Z.; Xu, J.; Han, Z.; Guo, J. TriangleConv: A deep point convolutional network for recognizing building shapes in map space. ISPRS Int. J. Geo-Inf. 2021, 10, 687. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Li, Z.; Xu, J.; Han, Z.; Guo, J. Few-shot building footprint shape classification with relation network. ISPRS Int. J. Geo-Inf. 2022, 11, 311. [Google Scholar] [CrossRef]
- Courtial, A.; Touya, G.; Zhang, X. Representing vector geographic information as a tensor for deep learning based map generalisation. In Proceedings of the 25th AGILE Conference, Vilnius, Lithuania, 14–17 June 2022; p. 32. [Google Scholar] [CrossRef]
- Touya, G.; Zhang, X.; Lokhat, I. Is deep learning the new agent for map generalization? Int. J. Cartogr. 2019, 5, 142–157. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Ai, T.; Yu, W.; Zhang, X. A linear tessellation model to identify spatial pattern in urban street networks. Int. J. Geogr. Inf. Sci. 2017, 31, 1541–1561. [Google Scholar] [CrossRef]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 3844–3852. Available online: https://arxiv.org/abs/1409.3215 (accessed on 24 June 2022).
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Hammond, D.K.; Vandergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 2011, 30, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Ying, R.; You, J.; Morris, C.; Ren, X.; Hamilton, W.L.; Leskovec, J. Hierarchical graph representation learning with differentiable pooling. In Proceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 4805–4815. Available online: https://arxiv.org/abs/1806.08804 (accessed on 19 January 2022).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; Available online: https://arxiv.org/abs/1412.6980 (accessed on 20 July 2022).
- Shilane, P.; Min, P.; Kazhdan, M.; Funkhouser, T. The Princeton shape benchmark. In Proceedings of the International Conference on Shape Modeling Applications, Genova, Italy, 7–9 June 2004; pp. 167–178. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. Available online: http://jmlr.org/papers/v9/vandermaaten08a.html (accessed on 21 July 2022).
- Latecki, L.J.; Lakamper, R.; Eckhardt, T. Shape descriptors for non-rigid shapes with a single closed contour. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 13–15 June 2000; pp. 424–429. [Google Scholar] [CrossRef]
Method | NN | FT | ST | DCG | Cost Time (s) |
---|---|---|---|---|---|
PixelNet | 0.989 | 0.473 | 0.622 | 0.883 | 1.949 |
SeqNet | 0.978 | 0.503 | 0.609 | 0.873 | 1.991 |
GraphNet | 0.993 | 0.619 | 0.694 | 0.925 | 1.904 |
GAE [3] | 0.989 | 0.466 | 0.591 | 0.874 | 1.881 |
FD [3] | 0.968 | 0.25 | 0.339 | 0.777 | 11.588 |
TF [3] | 0.978 | 0.31 | 0.416 | 0.82 | 26.483 |
Shape Pair | Shape Similarity | ||
---|---|---|---|
PixelNet | SeqNet | GraphNet | |
0.089 | 0.046 | 0.022 | |
0.565 | 0.485 | 0.496 | |
0.383 | 0.112 | 0.173 | |
0.214 | 0.387 | 0.115 | |
0.29 | 0.329 | 0.138 |
Dimension | PixelNet | SeqNet | GraphNet | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NN | FT | ST | DCG | NN | FT | ST | DCG | NN | FT | ST | DCG | |
32 | 0.976 | 0.427 | 0.509 | 0.852 | 0.97 | 0.477 | 0.559 | 0.872 | 0.992 | 0.577 | 0.659 | 0.902 |
64 | 0.985 | 0.46 | 0.544 | 0.867 | 0.977 | 0.49 | 0.604 | 0.874 | 0.991 | 0.57 | 0.644 | 0.907 |
128 | 0.989 | 0.473 | 0.622 | 0.883 | 0.978 | 0.503 | 0.609 | 0.873 | 0.993 | 0.619 | 0.694 | 0.925 |
256 | 0.990 | 0.487 | 0.617 | 0.888 | 0.977 | 0.505 | 0.61 | 0.876 | 0.99 | 0.578 | 0.647 | 0.908 |
512 | 0.988 | 0.484 | 0.614 | 0.88 | 0.978 | 0.5 | 0.604 | 0.874 | 0.991 | 0.589 | 0.644 | 0.904 |
Method | NN | FT | ST | DCG | Cost Time (s) |
---|---|---|---|---|---|
PixelNet | 0.873 | 0.491 | 0.55 | 0.76 | 0.523 |
SeqNet | 0.861 | 0.486 | 0.564 | 0.749 | 0.509 |
GraphNet | 0.912 | 0.532 | 0.608 | 0.813 | 0.511 |
GAE | 0.909 | 0.517 | 0.606 | 0.801 | 0.539 |
FD | 0.859 | 0.48 | 0.533 | 0.763 | 18.761 |
TF | 0.862 | 0.465 | 0.538 | 0.735 | 636.725 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Yang, M. A Comparative Study of Various Deep Learning Approaches to Shape Encoding of Planar Geospatial Objects. ISPRS Int. J. Geo-Inf. 2022, 11, 527. https://doi.org/10.3390/ijgi11100527
Yan X, Yang M. A Comparative Study of Various Deep Learning Approaches to Shape Encoding of Planar Geospatial Objects. ISPRS International Journal of Geo-Information. 2022; 11(10):527. https://doi.org/10.3390/ijgi11100527
Chicago/Turabian StyleYan, Xiongfeng, and Min Yang. 2022. "A Comparative Study of Various Deep Learning Approaches to Shape Encoding of Planar Geospatial Objects" ISPRS International Journal of Geo-Information 11, no. 10: 527. https://doi.org/10.3390/ijgi11100527