Gauging Heat Vulnerability in Southeast Florida: A Multimodal Approach Integrating Physical Exposure, Sensitivity, and Adaptive Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. SFHVI Data
2.1.1. Physical Exposure Indicators
2.1.2. Sensitivity Indicators
2.1.3. Adaptive Capacity Indicators
2.1.4. Data Preparation
2.2. Methods
2.2.1. Composite Indicator Construction
2.2.2. Hot Spot Analysis (Getis-Ord Gi*)
2.2.3. SFHVI Performance Assessment
3. Results
3.1. PCA Assigned SFHVI Subdimensions
3.2. SFHVI Spatial Variation
3.3. Getis-Ord Gi* Results
3.4. SFHVI Performance Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Environmental Protection Agency. Available online: https://www.epa.gov/heatislands/heat-island-impacts# (accessed on 2 November 2022).
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The urban heat island: Implications for health in a changing environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Filho, W.; Echevarria, L.; Neht, A.; Klavins, M.; Morgan, E. Coping with the impacts of urban heat islands: A literature-based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 2018, 171, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Kotharkar, R.; Ramesh, A.; Bagade, A. Urban heat island studies in Southeast Asia: A critical review. Urban Clim. 2018, 24, 1111–1126. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019; Available online: https://population.un.org/wup/publications/Files/WUP2018-Report.pdf (accessed on 2 November 2022).
- Zhao, L.; Oleson, K.; Bou-Zeid, E.; Krayenhoff, E.S.; Bray, A.; Zhu, Q.; Zheng, Z.; Chen, C.; Oppenheimer, M. Global multi-model projections of local urban climates. Nat. Clim. Chang. 2021, 11, 152–157. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 3 January 2022).
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Bou-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Sun, T.; Liu, M.; Yang, L.; Wang, L.; Gao, Z. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environ. Res. Lett. 2015, 10, 054009. [Google Scholar] [CrossRef]
- National Weather Service. Weather Related Fatality and Injury Statistics. Available online: https://www.weather.gov/hazstat/ (accessed on 20 January 2023).
- Morano, L.H.; Watkins, S.; Kintziger, K. A comprehensive evaluation of the burden of heat-related illness and death within the Florida population. Int. J. Environ. Res. Public Health 2016, 13, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Zhou, L.; Chen, K. Burden of cause-specific mortality attributable to heat and cold: A multicity timeseries study in Jiangsu Province, China. Environ. Int. 2020, 144, 105994. [Google Scholar] [CrossRef]
- Moon, J. The effect of the heatwave on the morbidity and mortality of diabetes patients; a meta-analysis for the era of the climate crisis. Environ. Res. 2021, 195, 110762. [Google Scholar] [CrossRef] [PubMed]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Hayden, M.H. Connecting people and place: A new framework for reducing urban vulnerability to extreme heat. Environ. Res. Lett. 2010, 5, 014021. [Google Scholar] [CrossRef]
- Wilson, B.; Chakraborty, A. Mapping vulnerability to extreme heat events: Lessons from metropolitan Chicago. J. Environ. Plan. Manag. 2019, 62, 1065–1088. [Google Scholar] [CrossRef]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the vulnerability of people and places: A case study of Georgetown, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 712–737. [Google Scholar] [CrossRef]
- Levy, B.S.; Patz, J.A. Climate change, human rights, and social justice. Ann. Glob. Health 2015, 81, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Li, Z.; Gao, Y.; Liu, X.; Xu, L.; Vardoulakis, S.; Yue, Y.; Wang, J.; Liu, Q. A Systematic Review of the Development and Validation of the Heat Vulnerability Index: Major Factors, Methods, and Spatial Units. Curr. Clim. Chang. Rep. 2021, 7, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cali, Y. Influences of land cover types, meteorological conditions, anthropogenic heat, and urban area on surface urban heat island in the Yangtze River Delta urban agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K. Satellite remote sensing of the surface urban heat island: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, P.; Priya, R.S.; Senthil, R. A review of recent developments in the impact of environmental measures on urban heat island. Sustain. Cities Soc. 2023, 88, 104279. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef]
- Alhawiti, R.H.; Mitsova, D. Using Landsat-8 data to explore the correlation between urban heat islands and urban land uses. Int. Res. J. Eng. Technol. 2016, 5, 457–466. [Google Scholar]
- Liu, W.; Feddema, J.; Hu, L.; Zung, A.; Brunsell, N. Seasonal and diurnal characteristics of land surface temperature and major explanatory factors in Harris County, Texas. Sustainability 2017, 9, 2324. [Google Scholar] [CrossRef] [Green Version]
- Mathew, A.; Sarwesh, P.; Khandelwal, S. Investigating the contrast diurnal relationship of land surface temperatures with various surface parameters represent vegetation, soil, water, and urbanization over Ahmedabad city in India. Energy Nexus 2022, 5, 100044. [Google Scholar] [CrossRef]
- Jamei, E.; Ossen, D.R.; Seyedmahmoudian, M.; Sandanayake, M.; Stojcevski, A.; Horan, B. Urban design parameters for heat mitigation in tropics. Renew. Sustain. Energy Rev. 2020, 134, 110362. [Google Scholar] [CrossRef]
- Souverijns, N.; De Ridder, K.; Veldeman, N.; Lefebre, F.; Kusambiza-Kiingi, F.; Memela, W.; Jones, N.K. Urban heat in Johannesburg and Ekurhuleni, South Africa: A meter-scale assessment and vulnerability analysis. Urban Clim. 2022, 46, 101331. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.K.; Mathew, A. Investigating the spatio-temporal correlation between urban heat island and atmospheric pollution island interaction over Delhi, India using geospatial techniques. Arab. J. Geosci. 2022, 15, 1591. [Google Scholar] [CrossRef]
- Naikoo, M.W.; Islam, A.R.M.T.; Mallick, J.; Rahman, A. Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Clim. 2022, 41, 101052. [Google Scholar] [CrossRef]
- Doan, V.Q.; Kusaka, H.; Nguyen, T.M. Roles of past, present, and future land use and anthropogenic heat release changes on urban heat island effects in Hanoi, Vietnam: Numerical experiments with a regional climate model. Sustain. Cities Soc. 2019, 47, 101479. [Google Scholar] [CrossRef]
- Chow, W.T.; Chuang, W.C.; Gober, P. Vulnerability to extreme heat in metropolitan Phoenix: Spatial, temporal, and demographic dimensions. Prof. Geogr. 2012, 64, 286–302. [Google Scholar] [CrossRef]
- Runkle, J.; Kunkel, K.; Champion, S.; Frankson, R.; Stewart, B.; Sweet, W. Florida State Climate Summary, NOAA Technical Report NESDIS 149-FL; NOAA/NESDIS: Silver Spring, MD, USA, 2017. [Google Scholar]
- Rayer, S.; Wang, Y. Projections of Florida Population by County, 2020–2045, with Estimates for 2016. BEBR 2017, 50. Available online: https://www.bebr.ufl.edu/sites/default/files/Research%20Reports/projections_2020.pdf (accessed on 3 November 2022).
- Gupta, N.; Mathew, A.; Khandelwal, S. Spatio-temporal impact assessment of land use/land cover (LU-LC) change on land surface temperatures over Jaipur city in India. Int. J. Urban Sustain. Dev. 2020, 12, 283–299. [Google Scholar] [CrossRef]
- Sam, S.C.; Balasubramanian, G. Spatiotemporal detection of land use/land cover changes and land surface temperature using Landsat and MODIS data across the coastal Kanyakumari district, India. Geod. Geodyn. 2023, 14, 172–181. [Google Scholar] [CrossRef]
- Kandel, H.; Melesse, A.; Whitman, D. An analysis of the urban heat island effect using radiosonde profiles and Landsat imagery with ground meteorological data in South Florida. Int. J. Remote Sens. 2016, 37, 2313–2337. [Google Scholar] [CrossRef]
- Hames, E.; Stoler, J.; Emrich, C.T.; Tewaru, S.; Pandya, N. A GIS approach to identifying socially and medically vulnerable older adult populations in South Florida. Gerontologist 2017, 57, 1133–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.P.; Stanforth, A.; Lulla, V.; Luber, G. Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Appl. Geogr. 2012, 35, 23–31. [Google Scholar] [CrossRef]
- Harlan, S.L.; Declet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect. 2013, 121, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Mushore, T.D.; Mutanga, O.; Odindi, J.; Dube, T. Determining extreme heat vulnerability of Harare Metropolitan City using multispectral remote sensing and socio-economic data. J. Spat. Sci. 2017, 63, 173–191. [Google Scholar] [CrossRef]
- Méndez-Lázaro, P.; Muller-Karger, F.E.; Otis, D.; McCarthy, M.J.; Rodriguez, E. A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico. Int. J. Biometeorol. 2018, 62, 709–722. [Google Scholar] [CrossRef]
- Nayak, S.G.; Shrestha, S.; Kinney, P.L.; Ross, Z.; Sheridan, S.C.; Pantea, C.I.; Hsu, W.H.; Muscatiello, N.; Hwang, S.A. Development of a heat vulnerability index for New York State. Public Health 2018, 161, 127–137. [Google Scholar] [CrossRef]
- Conlon, K.C.; Mallen, E.; Gronlund, C.J.; Berrocal, V.J.; Larsen, L.; O’Neill, M.S. Mapping human vulnerability to extreme heat: A critical assessment of heat vulnerability indices created using principal components analysis. Environ. Health Perspect. 2020, 128, 097001. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, W.; Yang, X.; Hu, K.; Zhang, W.; Huang, M. Mapping urban heat vulnerability of extreme heat in Hangzhou via comparing two approaches. Complexity 2020, 2020, 9717658. [Google Scholar] [CrossRef]
- Karanja, J.; Wanyama, D.; Kiage, L. Weighting mechanics and the spatial pattern of composite metrics of heat vulnerability in Atlanta, Georgia, USA. Sci. Total Environ. 2022, 812, 151432. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Thanh, K.; Dur, F. Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review. Energies 2022, 15, 6998. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, C.; Chen, F. Mapping heat-related health risks of elderly citizens in mountainous area: A case study of Chongqing, China. Sci. Total Environ. 2019, 663, 852–866. [Google Scholar] [CrossRef]
- Mallen, F.; Stone, B.; Lanza, K. A methodological assessment of extreme heat mortality modeling and heat vulnerability mapping in Dallas, Texas. Urban Clim. 2019, 30, 100528. [Google Scholar] [CrossRef]
- Räsänen, A.; Heikkinen, K.; Piila, N.; Juhola, S. Zoning and weighting in urban heat island vulnerability and risk mapping in Helsinki, Finland. Reg. Environ. Chang. 2019, 19, 1481–1493. [Google Scholar] [CrossRef] [Green Version]
- Joint Research Centre-European Commission. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Berlin, Germany, 2008. [Google Scholar]
- Bao, J.; Li, X.; Yu, C. The construction and validation of the heat vulnerability index, a review. Int. J. Environ. Res. Public Health 2015, 12, 7220–7234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karanja, J.; Kiage, L. Perspectives on spatial representation of urban heat vulnerability. Sci. Total Environ. 2021, 774, 145634. [Google Scholar] [CrossRef]
- Jung, P.H.; Thill, J.C.; Issel, M. Spatial autocorrelation and data uncertainty in the American Community Survey: A critique. Int. J. Geogr. Inf. Sci. 2019, 33, 1155–1175. [Google Scholar] [CrossRef]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Santamouris, M.; Kolokotsa, D. Urban Climate Mitigation Techniques, 1st ed.; Routledge: London, England, 2016. [Google Scholar]
- Cornell, C.; Gurran, N.; Lea, T. Climate Change, Housing, and Health: A Scoping Study on Intersections Between Vulnerability, Housing Tenure, and Potential Adaptation Responses; The University of Sydney, NSW Health, and the NSW Department of Planning, Industry and Environment: Sydney, NSW, Australia, 2020. [Google Scholar]
- Taber, J.M.; Leyva, B.; Persoskie, A. Why do people avoid medical care? A qualitative study using national data. J. Gen. Intern. Med. 2015, 30, 290–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soneja, S.; Jiang, C.; Fisher, J.; Upperman, C.R.; Mitchell, C.; Sapkota, A. Exposure to extreme heat and precipitation events associated with increased risk of hospitalization for asthma in Maryland, U.S.A. Environ. Health 2016, 15, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Luo, M.; Walker, R.J.; Liu, X.; Hwang, S.A.; Chinery, R. Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology 2009, 20, 738–746. [Google Scholar] [CrossRef]
- Fletcher, B.A.; Lin, S.; Fitzgerald, E.F.; Hwang, S.A. Association of summer temperatures with hospital admissions for renal diseases in New York state: A case-crossover study. Am. J. Epidemiol. 2012, 175, 907–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscail, C.; Upegui, E.; Viel, J.F. Mapping heatwave health risk at the community level for public health action. Int. J. Health Geogr. 2012, 11, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, S.G.; Lin, S.E.; Sheridan, S.C.; Lu, Y.; Graber, N.; Primeau, M.; Rafferty, C.J.; Hwang, S.A. Surveying local health departments and county emergency management offices on cooling centers as a heat adaptation resource in New York State. J. Community Health Res. 2017, 42, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Mehiriz, K.; Gosselin, P.; Tardif, I.; Lemieux, M.A. The Effect of an automated phone warning and health advisory system on adaptation to high heat episodes and health services use in vulnerable groups-evidence from a randomized controlled study. Int. J. Environ. Res. Public Health 2018, 15, 1581. [Google Scholar] [CrossRef] [Green Version]
- Sampson, N.R.; Gronlund, C.J.; Buxton, M.A.; Catalano, L.; White-Newsome, J.L.; Conlon, K.C.; O’Neill, M.S.; McCormick, S.; Parker, E.A. Staying cool in a changing climate: Reaching vulnerable populations during heat events. Global Environ. Chang. 2013, 23, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, S.; Eftekhari, A.; Sadeghian, M.; Kazemi, S.; Nadjarzadeh, A. The effect of disaster management training program on knowledge, attitude, and practice of hospital staffs in natural disasters. J. Disaster Emerg. Res. 2020, 2, 9–16. [Google Scholar] [CrossRef]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S. Tools for Composite Indicators Building; European Commission, Institute for the Protection and Security of the Citizen, JRC: Ispra, Italy, 2005. [Google Scholar]
- Greco, S.; Ishizaka, A.; Tasiou, M.; Torrisi, G. On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Soc. Indic. Res. 2019, 141, 61–94. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, H.F. A second generation Little-Jiffy. Psychomelrika 1960, 35, 401–415. [Google Scholar] [CrossRef]
- O’Rourke, N.; Hatcher, L. A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, 2nd ed.; SAS Institute Inc: Cary, NC, USA, 2013. [Google Scholar]
- Mitchell, A. The ESRI Guide to GIS Analysis, 2nd ed.; ESRI Press: Redlands, CA, USA, 2005. [Google Scholar]
- Barron, L.; Ruggieri, D.; Branas, C. Assessing vulnerability to heat: A geospatial analysis for the City of Philadelphia. Urban Sci. 2018, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Powell, H.S.; Greenberg, D.L. Screening for unhealthy diet and exercise habits: The electronic health record and a healthier population. Prev. Med. Rep. 2019, 14, 100816. [Google Scholar] [CrossRef] [PubMed]
- Al-Delaimy, W.K.; Webb, M. Community Gardens as Environmental Health Interventions: Benefits Versus Potential Risks. Curr. Environ. Health. Rep. 2018, 4, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Smith, J.P.; Tong, D.; Turner, B.L. Optimizing the co-benefits of food desert and urban heat mitigation through community garden planning. Landsca. Urban Plan. 2022, 226, 104488. [Google Scholar] [CrossRef]
- Buettner-Schmidt, K.; Miller, D.R.; Maack, B. Disparities in Rural Tobacco Use, Smoke-Free Policies, and Tobacco Taxes. West. J. Nurs. Res. 2019, 41, 1184–1202. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Horton, R.M.; Bader, D.A.; Lesk, C.; Jiang, L.; Jones, B.; Zhou, L.; Chen, X.; Bi, J.; Kinney, P.L. Impact of climate change on heat-related mortality in Jiangsu Province, China. Environ. Pollut. 2017, 224, 317–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezgrebelna, M.; McKenzie, K.; Wells, S.; Ravindran, A.; Kral, M.; Christensen, J.; Stergiopoulos, V.; Gaetz, S.; Kidd, S.A. Climate change, weather, housing precarity, and homelessness: A systematic review of reviews. Int. J. Environ. Res. Public Health 2021, 18, 5812. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Seposo, X.T.; Togawa, T.; Hijioka, Y.; Takahashi, K.; Nakamura, S. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nat. Commun. 2020, 11, 1581. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Choi, H.I. Comparison of flood vulnerability assessments to climate change by construction frameworks for a composite indicator. Sustainability 2018, 10, 768. [Google Scholar] [CrossRef] [Green Version]
- Sera, F.; Hashizume, M.; Honda, Y.; Lavigne, E.; Schwartz, J.; Zanobetti, A.; Tobias, A.; Iñiguez, C.; Vicedo-Cabrera, A.M.; Blangiardo, M.; et al. Air conditioning and heat-related mortality: A multi-country longitudinal study. Epidemiology 2020, 31, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S. Compound heat vulnerability in the record-breaking hot summer of 2022 over the Yangtze River Delta Region. Int. J. Environ. Res. Public Health 2023, 20, 5539. [Google Scholar] [CrossRef] [PubMed]
- Charabi, Y.; Bakhit, A. Assessment of the canopy urban heat island of a coastal arid tropical city: The case of Muscat, Oman. Atmos. Res. 2011, 101, 215–227. [Google Scholar] [CrossRef]
- Peng, J.; Ma, J.; Liu, Q.; Liu, Y.; Hu, Y.N.; Li, Y.; Yue, Y. Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective. Sci. Total Environ. 2018, 635, 487–497. [Google Scholar] [CrossRef] [PubMed]
Dimension | Variable | Source | Year |
---|---|---|---|
Physical Exposure | Anthropogenic Heat (W/m2) | Varquez et al. (2021) Global 1 km AHE Dataset | 2010s |
Building Density (%) | Microsoft Nationwide Building Footprints | 2019–2020 | |
Crowding (%) | ACS 5-Year Estimates | 2015–2019 | |
Imperviousness (%) | Multi-Resolution Land Characteristics Consortium | 2016 | |
LST (°C) | USGS Earth Explorer | 2014–2017 | |
Tree Canopy (%) | Multi-Resolution Land Characteristics Consortium | 2016 | |
Water/Wetlands (%) | National Land Cover Database | 2016 | |
Social Sensitivity | Age Dependent (%) | ACS 5-Year Estimates | 2015–2019 |
Education (%) | ACS 5-Year Estimates | 2015–2019 | |
Health Insurance (%) | ACS 5-Year Estimates | 2015–2019 | |
Race/Ethnicity (%) | ACS 5-Year Estimates | 2015–2019 | |
Poverty (%) | ACS 5-Year Estimates | 2015–2019 | |
Health Sensitivity | Asthma (Rate/100 k) | FL Health Tracking Network | 2015–2019 |
Cardiovascular (Rate/100 k) | FL Health CHARTS | 2015–2019 | |
COPD (Rate/100 k) | FL Health Tracking Network | 2015–2019 | |
Diabetes (Rate/100 k) | FL Health CHARTS | 2015–2019 | |
Disabilities (%) | ACS 5-Year Estimates | 2015–2019 | |
Renal (Rate/100 k) | FL Health CHARTS | 2015–2019 | |
Adaptive Capacity | Internet (%) | ACS 5-Year Estimates | 2015–2019 |
Libraries/Malls (km) | Florida Geographic Data Library/Google Earth | 2015/2021 | |
Medical Facilities (km) | Homeland Infrastructure Foundation-Level Data | 2018–2020 | |
Parks (%) | FL Health Tracking Network | 2016–2017 | |
Phone (%) | ACS 5-Year Estimates | 2015–2019 | |
Swimming Pools (#) | Florida Geographic Data Library | 2018 |
Model | Transformed | Standardization | Weighting | Scaled | Aggregation |
---|---|---|---|---|---|
SFHVI | Yes | Z-score | PCA | No | Linear |
Alternative 1 | Yes | Z-score | Equal (none) | No | Linear |
Alternative 2 | Yes | Z-score | Equal (none) | Yes | Linear |
Alternative 3 | Yes | Z-score | PCA | Yes | Linear |
Alternative 4 | Yes | Min-Max | Equal (none) | No | Linear |
Alternative 5 | Yes | Min-Max | PCA | No | Linear |
Alternative 6 | Yes | Min-Max | Equal (none) | Yes | Linear |
Alternative 7 | Yes | Min-Max | PCA | Yes | Linear |
Alternative 8 | No | Z-score | Equal (none) | No | Linear |
Alternative 9 | No | Z-score | PCA | No | Linear |
Alternative 10 | Yes | Z-score | PCA | Yes | Geometric |
C1 | C2 | C3 | C4 | C5 | Weight | |
---|---|---|---|---|---|---|
Education | 0.834 | 0.278 | 0.077 | 0.150 | 0.144 | 0.055 |
Poverty | 0.802 | 0.138 | 0.096 | −0.141 | 0.201 | 0.051 |
Health Insurance | 0.779 | 0.204 | −0.186 | −0.057 | 0.176 | 0.048 |
Race/Ethnicity | 0.760 | 0.360 | −0.225 | 0.114 | −0.022 | 0.046 |
Crowding | 0.758 | 0.210 | −0.223 | −0.078 | 0.032 | 0.045 |
Internet | 0.709 | 0.125 | 0.177 | −0.225 | 0.076 | 0.040 |
Phone | 0.527 | −0.006 | 0.119 | −0.289 | 0.043 | 0.022 |
Building Density | 0.009 | 0.882 | 0.015 | −0.243 | −0.016 | 0.061 |
Water/Wetlands | 0.192 | 0.771 | 0.044 | 0.046 | 0.214 | 0.047 |
LST | 0.478 | 0.767 | 0.065 | −0.066 | 0.132 | 0.046 |
Imperviousness | 0.285 | 0.723 | 0.067 | −0.411 | 0.117 | 0.041 |
Anthropogenic Heat | 0.347 | 0.647 | −0.058 | −0.468 | −0.059 | 0.033 |
Tree Canopy | 0.319 | 0.506 | 0.083 | −0.384 | −0.200 | 0.020 |
Cardiovascular | −0.073 | 0.061 | 0.874 | −0.037 | 0.165 | 0.060 |
Age Dependent | −0.302 | −0.022 | 0.834 | −0.044 | −0.049 | 0.055 |
Disabilities | 0.115 | −0.024 | 0.825 | 0.013 | 0.178 | 0.054 |
Diabetes | 0.420 | 0.154 | 0.633 | 0.095 | 0.193 | 0.032 |
Libraries/Malls | −0.099 | −0.248 | −0.020 | 0.661 | 0.039 | 0.034 |
Swimming Pools | 0.345 | 0.334 | −0.093 | 0.586 | 0.079 | 0.027 |
Medical Facilities | −0.089 | −0.335 | −0.066 | 0.579 | −0.121 | 0.026 |
Parks | −0.196 | −0.210 | 0.211 | 0.571 | −0.188 | 0.026 |
COPD | 0.191 | 0.136 | 0.344 | −0.127 | 0.823 | 0.053 |
Asthma | 0.451 | 0.036 | −0.006 | 0.001 | 0.770 | 0.047 |
Renal | −0.071 | 0.071 | 0.505 | −0.028 | 0.644 | 0.033 |
Eigenvalue Total | 7.745 | 3.622 | 2.6 | 1.403 | 1.173 | - |
% Total Variance | 32.273 | 15.091 | 10.835 | 5.845 | 4.887 | - |
Model | Mean | t | Two-Sided p |
---|---|---|---|
SFHVI | 50.24 | - | - |
Alternative 1 | 48.92 | 5.454 | <0.001 |
Alternative 2 | 47.89 | 3.394 | 0.001 |
Alternative 3 | 49.29 | 1.665 | 0.100 |
Alternative 4 | 48.14 | 6.124 | <0.001 |
Alternative 5 | 49.80 | 1.916 | 0.059 |
Alternative 6 | 47.81 | 3.292 | 0.001 |
Alternative 7 | 49.09 | 1.914 | 0.059 |
Alternative 8 | 48.29 | 2.631 | 0.010 |
Alternative 9 | 45.09 | 7.973 | <0.001 |
Alternative 10 | 58.75 | 10.495 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cresswell, K.; Mitsova, D.; Liu, W.; Fadiman, M.; Hindle, T. Gauging Heat Vulnerability in Southeast Florida: A Multimodal Approach Integrating Physical Exposure, Sensitivity, and Adaptive Capacity. ISPRS Int. J. Geo-Inf. 2023, 12, 242. https://doi.org/10.3390/ijgi12060242
Cresswell K, Mitsova D, Liu W, Fadiman M, Hindle T. Gauging Heat Vulnerability in Southeast Florida: A Multimodal Approach Integrating Physical Exposure, Sensitivity, and Adaptive Capacity. ISPRS International Journal of Geo-Information. 2023; 12(6):242. https://doi.org/10.3390/ijgi12060242
Chicago/Turabian StyleCresswell, Kevin, Diana Mitsova, Weibo Liu, Maria Fadiman, and Tobin Hindle. 2023. "Gauging Heat Vulnerability in Southeast Florida: A Multimodal Approach Integrating Physical Exposure, Sensitivity, and Adaptive Capacity" ISPRS International Journal of Geo-Information 12, no. 6: 242. https://doi.org/10.3390/ijgi12060242
APA StyleCresswell, K., Mitsova, D., Liu, W., Fadiman, M., & Hindle, T. (2023). Gauging Heat Vulnerability in Southeast Florida: A Multimodal Approach Integrating Physical Exposure, Sensitivity, and Adaptive Capacity. ISPRS International Journal of Geo-Information, 12(6), 242. https://doi.org/10.3390/ijgi12060242