Developing a Base Domain Ontology from Geoscience Report Collection to Aid in Information Retrieval towards Spatiotemporal and Topic Association
Abstract
:1. Introduction
- (1)
- By employing a top-down methodology, we construct a geological domain ontology library that contains a comprehensive depiction of geological concepts, attributes, relationships, rules, and contextual instances. This ontology library comprises 23 major categories and an extensive array of over 50,000 terms.
- (2)
- Based on the aforementioned geological domain ontology, we propose an innovative retrieval framework for geological data, emphasizing the spatiotemporal and topic dimensions. This framework facilitates the extraction of multiple features, including geological time, location, and topic, from unstructured data sources. Furthermore, we establish a robust geological data indexing mechanism that enables the association of temporal, spatial, and topic multi-features. Ultimately, this indexing mechanism facilitates semantic search capabilities for geological big data.
- (3)
- To validate the efficacy of our proposed spatiotemporal and topic retrieval framework, we conduct a rigorous analysis using case studies. This analysis compares the retrieval outcomes obtained through traditional keyword-based approaches with those achieved through ontology-based retrieval methods. The experimental results demonstrate a significant enhancement in the completeness and accuracy of retrieved data following the integration of a geological ontology.
2. Related Work
3. Research Methodology
3.1. Defining the Purpose and the Scope of the Geological Ontology
3.2. Ontology Capturing and Coding
3.3. Semantic Web Rule Language Rule Development
3.4. Ontology Validation and Improvement
4. The Base Domain Ontology Construction and Information Retrieval Framework Based on Multi-Feature and Domain Ontology
4.1. Basic Ontology Construction
4.1.1. The Geological Ontology
4.1.2. The Spatial Ontology
4.1.3. The Time Ontology
4.2. Geological Ontology Evaluation
4.3. Information Extraction Based on the Domain Ontology
4.4. Multi-feature Linked Geological Data Indexing Model
4.5. A Framework for Geological Data Retrieval That Consider Spatial and Topic Multicorrelations
- (1)
- Ontology design: geologists use the ontology editor to build domain ontologies and use the SWRL to design retrieval workflows for different types of retrieval questions.
- (2)
- Ontology catalog: data service providers publish geological data maps and geological subject information services with semantic annotation in the corresponding domain ontologies.
- (3)
- User interface: geologists ask search questions and seek geological knowledge.
- (4)
- Ontology engine: the ontology engine parses the retrieval questions submitted by geologists and, through the topic reasoning function of the ontology, discovers matching map services to solve the retrieval questions using the retrieval workflow designed by geological experts.
- (1)
- Retrieval workflow for the Where_Near type:
- (2)
- Auxiliary search workflows of type Where_Near:
- (3)
- For Where_Near-type search questions in the question ontology, the user interface module automatically constructs the corresponding SWRL rules:
5. Ontology-Based Spatiotemporal and Topic-Based Information Retrieval: A Case Study
5.1. Data Source
5.2. SWRL Rule Development
@prefix sample: <http://www.semanticweb.org/Sample#> [Rule1: (?classA rdfs:subClassOf ?classB)(?classB rdfs:subClassOf ?classC) -> (?classA rdfs:subClassOf ?classC) Rule2: (?instance rdf:type ?classA)(?classA rdfs:subClassOf ?classB) -> (?instance rdf:type ?classB) Rule3: (?classA sample:equivalentTo ?classB) -> (?classB sample:equivalentTo ?classA) Rule4: (?instance rdf:type ?classA)(?classA sample:equivalentTo ?classB) -> (?instance rdf:type ?classB) ] |
5.3. Search Results
Prefix geo:http://www.semanticweb.org/Geology# Select ?instance Where{ ?instance rdf:type geo: Neutral volcanic rocks } |
Prefix geo:http://www.semanticweb.org/Geology# Select ?className Where{ ?className:rdfs:subClassof geo: Neutral volcanic rocks } |
Prefix geo:http://www.semanticweb.org/Geology# Select ?instance Where{ {?instance rdf:type geo: Neutral volcanic rocks} UNION{?instance rdf:type geo: Grayan Rock} {?instance rdf:type geo: Basaltic coarse andesite} UNION{?instance rdf:type geo: Hornblende andesite} } |
5.4. Matching Evaluation of Search Results
5.5. Validation: Result Evaluation
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, L.; Xue, L.; Li, C.; Lv, X.; Chen, Z.; Jiang, B.; Guo, M.; Xie, Z. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data. ISPRS Int. J. Geo-Inf. 2017, 6, 166. [Google Scholar] [CrossRef]
- Qiu, Q.; Xie, Z.; Wu, L. A cyclic self-learning Chinese word segmentation for the geoscience domain. Geomatica 2018, 72, 16–26. [Google Scholar] [CrossRef]
- Qiu, Q.; Xie, Z.; Wu, L.; Li, W. DGeoSegmenter: A dictionary-based Chinese word segmenter for the geoscience domain. Comput. Geosci. 2018, 121, 1–11. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Li, W.; Qiu, Q.; Xie, Z.; Liu, H.; Zhou, Y. A semi-automatic approach for generating geological profiles by integrating multi-source data. Ore Geol. Rev. 2021, 134, 104190. [Google Scholar] [CrossRef]
- Guo, H. Big Earth data: A new frontier in Earth and information sciences. Big Earth Data 2017, 1, 4–20. [Google Scholar] [CrossRef]
- Zhang, W.; Ching, J.; Goh, A.T.; Leung, A.Y. Big data and machine learning in geoscience and geoengineering: Introduction. Geosci. Front. 2020, 12, 327–329. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, H.; Wang, C.; Hou, Z.; Zheng, Z.; Shen, S.; Cheng, Q.; Feng, Z.; Wang, X.; Lv, H.; et al. Geoscience knowledge graph in the big data era. Sci. China Earth Sci. 2021, 64, 1105–1114. [Google Scholar] [CrossRef]
- Qiu, Q.; Xie, Z.; Wu, L.; Tao, L.; Li, W. BiLSTM-CRF for geological named entity recognition from the geoscience literature. Earth Sci. Inform. 2019, 12, 565–579. [Google Scholar] [CrossRef]
- Qiu, Q.; Xie, Z.; Wu, L.; Li, W. Geoscience keyphrase extraction algorithm using enhanced word embedding. Expert Syst. Appl. 2019, 125, 157–169. [Google Scholar] [CrossRef]
- Qiu, Q.; Xie, Z.; Wu, L.; Tao, L. GNER: A Generative Model for Geological Named Entity Recognition without Labeled Data Using Deep Learning. Earth Space Sci. 2019, 6, 931–946. [Google Scholar] [CrossRef]
- Li, W.; Ma, K.; Qiu, Q.; Wu, L.; Xie, Z.; Li, S.; Chen, S. Chinese Word Segmentation Based on Self-Learning Model and Geological Knowledge for the Geoscience Domain. Earth Space Sci. 2021, 8, e2021EA001673. [Google Scholar] [CrossRef]
- Ma, K.; Tian, M.; Tan, Y.; Xie, X.; Qiu, Q. What is this article about? Generative summarization with the BERT model in the geosciences domain. Earth Sci. Inform. 2021, 15, 21–36. [Google Scholar] [CrossRef]
- Holden, E.-J.; Liu, W.; Horrocks, T.; Wang, R.; Wedge, D.; Duuring, P.; Beardsmore, T. GeoDocA—Fast analysis of geological content in mineral exploration reports: A text mining approach. Ore Geol. Rev. 2019, 111, 102919. [Google Scholar] [CrossRef]
- Enkhsaikhan, M.; Holden, E.-J.; Duuring, P.; Liu, W. Understanding ore-forming conditions using machine reading of text. Ore Geol. Rev. 2021, 135, 104200. [Google Scholar] [CrossRef]
- Qiu, Q.; Tian, M.; Ma, K.; Tan, Y.J.; Tao, L.; Xie, Z. A question answering system based on mineral exploration ontology generation: A deep learning methodology. Ore Geol. Rev. 2023, 153, 105294. [Google Scholar] [CrossRef]
- Li, W.; Wu, L.; Xie, Z.; Tao, L.; Zou, K.; Li, F.; Miao, J. Ontology-based question understanding with the constraint of Spatio-temporal geological knowledge. Earth Sci. Inform. 2019, 12, 599–613. [Google Scholar] [CrossRef]
- Qiu, Q.; Xie, Z.; Wu, L.; Tao, L. Automatic spatiotemporal and semantic information extraction from unstructured geoscience reports using text mining techniques. Earth Sci. Inform. 2020, 13, 1393–1410. [Google Scholar] [CrossRef]
- Ma, X. Knowledge graph construction and application in geosciences: A review. Comput. Geosci. 2022, 161, 105082. [Google Scholar] [CrossRef]
- Wang, C.; Hazen, R.M.; Cheng, Q.; Stephenson, M.H.; Zhou, C.; Fox, P.; Shen, S.-Z.; Oberhänsli, R.; Hou, Z.; Ma, X.; et al. The Deep-Time Digital Earth program: Data-driven discovery in geosciences. Natl. Sci. Rev. 2021, 8, nwab027. [Google Scholar] [CrossRef]
- Ma, X.; Ma, C.; Wang, C. A new structure for representing and tracking version information in a deep time knowledge graph. Comput. Geosci. 2020, 145, 104620. [Google Scholar] [CrossRef]
- Wang, B.; Ma, K.; Wu, L.; Qiu, Q.; Xie, Z.; Tao, L. Visual analytics and information extraction of geological content for text-based mineral exploration reports. Ore Geol. Rev. 2022, 144, 104818. [Google Scholar] [CrossRef]
- Qiu, Q.; Wang, B.; Ma, K.; Xie, Z. Geological profile-text information association model of mineral exploration reports for fast analysis of geological content. Ore Geol. Rev. 2022, 153, 105278. [Google Scholar] [CrossRef]
- Perrin, M.; Mastella, L.S.; Morel, O.; Lorenzatti, A. Geological time formalization: An improved formal model for describing time successions and their correlation. Earth Sci. Inform. 2011, 4, 81–96. [Google Scholar] [CrossRef]
- Ma, X.; Carranza, E.J.M.; Wu, C.; van der Meer, F.D. Ontology-aided annotation, visualization, and generalization of geological time-scale information from online geological map services. Comput. Geosci. 2012, 40, 107–119. [Google Scholar] [CrossRef]
- Hwang, J.; Nam, K.W.; Ryu, K.H. Designing and implementing a geologic information system using a spatiotemporal ontology model for a geologic map of Korea. Comput. Geosci. 2012, 48, 173–186. [Google Scholar] [CrossRef]
- Wu, L.; Xue, L.; Li, C.; Lv, X.; Chen, Z.; Guo, M.; Xie, Z. A Geospatial Information Grid Framework for Geological Survey. PLoS ONE 2015, 10, e0145312. [Google Scholar] [CrossRef]
- Borges, K.A.V.; Davis, C.A.; Laender, A.H.F.; Medeiros, C.B. Ontology-driven discovery of geospatial evidence in web pages. GeoInformatica 2011, 15, 609–631. [Google Scholar] [CrossRef]
- Kergosien, E.; Laval, B.; Roche, M.; Teisseire, M. Are Opinions Expressed in Land- Use Planning Documents. Int. J. Geogr. Inf. Sci. 2014, 28, 739–762. [Google Scholar] [CrossRef]
- Ballatore, A.; Bertolotto, M.; Wilson, D.C. An evaluative baseline for geo-semantic relatedness and similarity. GeoInformatica 2014, 18, 747–767. [Google Scholar] [CrossRef]
- Wang, W.; Stewart, K. Spatiotemporal and semantic information extraction from Web news reports about natural hazards. Comput. Environ. Urban Syst. 2015, 50, 30–40. [Google Scholar] [CrossRef]
- Mata-Rivera, F.; Torres-Ruiz, M.; Guzmán, G.; Moreno-Ibarra, M.; Quintero, R. A collaborative learning approach for geographic information retrieval based on social networks. Comput. Hum. Behav. 2015, 51, 829–842. [Google Scholar] [CrossRef]
- Ke, S.; Gong, J.; Li, S.; Zhu, Q.; Liu, X.; Zhang, Y. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases. Sensors 2014, 14, 12990–13005. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, S.; Gao, H.; Li, J.; Ooi, B.C. Indexing Multi-Dimensional Data in a Cloud System. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, Indianapolis, IN, USA, 6–10 June 2010; ACM: New York, NY, USA, 2010; pp. 591–602. [Google Scholar]
- Dittrich, J.; Quiané-Ruiz, J.-A.; Richter, S.; Schuh, S.; Jindal, A.; Schad, J. Only aggressive elephants are fast elephants. Proc. VLDB Endow. 2012, 5, 1591–1602. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Kumar, S.; Chang, S.-F. Learning to Hash for Indexing Big Data—A Survey. Proc. IEEE 2016, 104, 34–57. [Google Scholar] [CrossRef]
- Kiryakov, A.; Popov, B.; Terziev, I.; Manov, D.; Ognyanoff, D. Semantic annotation, indexing, and retrieval. J. Web Semant. 2004, 2, 49–79. [Google Scholar] [CrossRef]
- Klien, E.; Lutz, M.; Kuhn, W. Ontology-based discovery of geographic information services—An application in disaster management. Comput. Environ. Urban Syst. 2006, 30, 102–123. [Google Scholar] [CrossRef]
- Lutz, M.; Klien, E. Ontology-based retrieval of geographic information. Int. J. Geogr. Inf. Sci. 2006, 20, 233–260. [Google Scholar] [CrossRef]
- Gui, Z.; Yang, C.; Xia, J.; Liu, K.; Xu, C.; Li, J.; Lostritto, P. A performance, semantic and service quality-enhanced distributed search engine for improving geospatial resource discovery. Int. J. Geogr. Inf. Sci. 2013, 27, 1109–1132. [Google Scholar] [CrossRef]
- Guo, M. The Application of Ontology in Semantic Discovery for GeoData Web Service. Commun. Netw. 2013, 5, 678–680. [Google Scholar] [CrossRef]
- Han, L.S.; Finin, T.; Joshi, A. Schema-Free structured querying of DBpedia data. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management (CIKM 2012), Maui, HI, USA, 29 October–2 November 2012; pp. 2090–2093. [Google Scholar]
- Rubin, D.L.; Flanders, A.; Kim, W.; Siddiqui, K.M.; Kahn, C.E. Ontology-Assisted Analysis of Web Queries to Determine the Knowledge Radiologists Seek. J. Digit. Imaging 2011, 24, 160–164. [Google Scholar] [CrossRef]
- Zhuhadar, L.; Nasraoui, O.; Wyatt, R. Visual Ontology-Based Information Retrieval System. In Proceedings of the 2009 13th International Conference Information Visualisation, Barcelona, Spain, 15–17 July 2009; pp. 419–426. [Google Scholar]
- Zhuhadar, L.; Nasraoui, O.; Wyatt, R.; Romero, E. Multi-Language ontology-based search engine. In Proceedings of the 2010 Third International Conference on Advances in Computer-Human Interactions (ACHI 2010), Saint Maarten, Netherlands Antilles, 10–15 February 2010; pp. 13–18. [Google Scholar]
- Fernández, M.; Cantador, I.; López, V.; Vallet, D.; Castells, P.; Motta, E. Semantically enhanced Information Retrieval: An ontology-based approach. Web Semant. Sci. Serv. Agents World Wide Web 2011, 9, 434–452. [Google Scholar] [CrossRef]
- Allocca, C.; D’aquin, M.; Motta, E. Impact of using relationships between ontologies to enhance the ontology search results. In Proceedings of the 9th International Conference on The Semantic Web: Research and Applications, Crete, Greece, 27–31 May 2012; pp. 453–468. [Google Scholar]
- Yoo, D. Hybrid query processing for personalized information retrieval on the Semantic Web. Knowl. Based Syst. 2012, 27, 211–218. [Google Scholar] [CrossRef]
- Kallipolitis, L.; Karpis, V.; Karali, I. Semantic search in the World News domain using automatically extracted metadata files. Knowl.-Based Syst. 2012, 27, 38–50. [Google Scholar] [CrossRef]
- Hourali, M.; Montazer, G.A. An Intelligent Information Retrieval Approach Based on Two Degrees of Uncertainty Fuzzy Ontology. Adv. Fuzzy Syst. 2011, 2011, 7. [Google Scholar] [CrossRef]
- Lim, S.C.J.; Liu, Y.; Lee, W.B. Multi-facet product information search and retrieval using semantically annotated product family ontology. Inf. Process. Manag. 2010, 46, 479–493. [Google Scholar]
- Wiegand, N.; García, C. A Task-Based Ontology Approach to Automate Geospatial Data Retrieval. Trans. GIS 2007, 11, 355–376. [Google Scholar] [CrossRef]
- Sun, K.; Zhu, Y.; Pan, P.; Hou, Z.; Wang, D.; Li, W.; Song, J. Geospatial data ontology: The semantic foundation of geospatial data integration and sharing. Big Earth Data 2019, 3, 269–296. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Chen, X.; Guo, X.; Zhao, Q.; Li, J.; Kang, L.; Liu, J. A Heterogeneous Geospatial Data Retrieval Method Using Knowledge Graph. Sustainability 2021, 13, 2005. [Google Scholar] [CrossRef]
- Lv, X.; Xie, Z.; Xu, D.; Jin, X.; Ma, K.; Tao, L.; Qiu, Q.; Pan, Y. Chinese Named Entity Recognition in the Geoscience Domain Based on BERT. Earth Space Sci. 2022, 9, e2021ea002166. [Google Scholar] [CrossRef]
- Zhang, S.; Boukamp, F.; Teizer, J. Ontology-based semantic modeling of construction safety knowledge: Towards automated safety planning for job hazard analysis (JHA). Autom. Constr. 2015, 52, 29–41. [Google Scholar] [CrossRef]
- Musen, M.A. The protégé project: A look back and a look forward. AI Matters 2015, 1, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.F.; Abel, M.; Perrin, M.; Alvarenga, R.d.S. The GeoCore ontology: A core ontology for general use in Geology. Comput. Geosci. 2019, 135, 104387. [Google Scholar] [CrossRef]
- Arp, R.; Smith, B.; Spear, A.D. Building Ontologies with Basic Formal Ontology; Mit Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Mantovani, A.; Piana, F.; Lombardo, V. Ontology-driven representation of knowledge for geological maps. Comput. Geosci. 2020, 139, 104446. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Zhu, H.; Ying, S.; Luo, Q.; Luo, H.; Kuai, X.; Xia, H.; Shen, H. A bibliometric and visual analysis of global geo-ontology research. Comput. Geosci. 2017, 99, 1–8. [Google Scholar] [CrossRef]
- Andrés, S.; Arvor, D.; Mougenot, I.; Libourel, T.; Durieux, L. Ontology-based classification of remote sensing images using spectral rules. Comput. Geosci. 2017, 102, 158–166. [Google Scholar] [CrossRef]
- Wang, C.; Ma, X.; Chen, J. Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information. Comput. Geosci. 2018, 115, 12–19. [Google Scholar] [CrossRef]
- Niles, I.; Pease, A. Towards a standard upper ontology. In Proceedings of the International Conference on Formal Ontology in Information Systems-Volume 2001, Ogunquit, ME, USA, 17–19 October 2001; pp. 2–9. [Google Scholar]
- Gangemi, A.; Guarino, N.; Masolo, C.; Oltramari, A.; Schneider, L. Sweetening ontologies with DOLCE. In Proceedings of the International Conference on Knowledge Engineering and Knowledge Management, Sigüenza, Spain, 1–4 October 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 166–181. [Google Scholar]
- Partridge, C.; Stefanova, M. Building a Foundation for Ontologies of Organizations. In The Ontology and Modelling of Real Estate Transactions; Routledge: London, UK, 2003; pp. 141–149. [Google Scholar]
- Guizzardi, G. Ontological Foundations for Structural Conceptual Models. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2005. [Google Scholar]
- Herre, H. General Formal Ontology (GFO): A foundational ontology for conceptual modelling. In Theory and Applications of Ontology: Computer Applications; Springer: Dordrecht, The Netherlands, 2010; pp. 297–345. [Google Scholar]
- Raskin, R.G.; Pan, M.J. Knowledge representation in the semantic web for Earth and environmental terminology (SWEET). Comput. Geosci. 2005, 31, 1119–1125. [Google Scholar] [CrossRef]
- Raskin, R. Development of ontologies for earth system science. Geol. Soc. Am. Spec. Pap. 2006, 397, 195–199. [Google Scholar] [CrossRef]
- Zhong, J.; Aydina, A.; McGuinness, D.L. Ontology of fractures. J. Struct. Geol. 2009, 31, 251–259. [Google Scholar] [CrossRef]
- Ma, X.; Asch, K.; Laxton, J.L.; Richard, S.M.; Asato, C.G.; Carranza, E.J.M.; van der Meer, F.D.; Wu, C.; Duclaux, G.; Wakita, K. Data exchange facilitated. Nat. Geosci. 2011, 4, 814. [Google Scholar] [CrossRef]
- Babaie, H.A.; Oldow, J.S.; Babaei, A.; Lallemant, H.G.A.; Watkinson, A.J. Designing a modular architecture for the structural geology ontology. Geoinform. Data Knowl. Geol. Soc. Am. Spec. Pap. 2006, 397, 269–282. [Google Scholar] [CrossRef]
Participant | Years of Experience | Job Title |
---|---|---|
1 | 20 | Geological information supervisor |
2 | 10 | Geological information supervisor |
3 | 8 | Geological information supervisor |
4 | 25 | Geological engineering supervisor |
5 | 26 | Tectonic geologist |
6 | 28 | Metallogenic geologist |
7 | 16 | Engineering geologist |
8 | 17 | Stratigraphic paleontologist |
9 | 19 | Geological information supervisor |
10 | 20 | Geological information supervisor |
Question | Mean | Median | Standard Deviation | Result |
---|---|---|---|---|
Are you familiar with the concepts used in the ontology? | 1.44 | 2 | 0.51 | Very familiar to familiar |
Do you think the concepts and relations used in the ontology are representative? | 1.63 | 2 | 0.49 | Representative |
How easy was it to understand and navigate through the ontology? | 1.81 | 2 | 0.53 | Easy |
Does the ontology cover the main concepts and relations within the geoscience domain? | 1.90 | 2 | 0.51 | Agree |
Use | Rule Expression |
---|---|
Discovery of ontological superordinate concepts in the geological field | @prefix geo: <http://www.semanticweb.org/Geology#> [Rule1:(?a rdfs:subClassOf ?b) ->(?b geo:broaderClassOf ?a)] |
Discovering ontological subordinate concepts in the geological field | @prefix geo: <http://www.semanticweb.org/Geology#> [Rule1:(?a rdfs:subClassOf ?b) (?b rdfs:subClassOf ?c)->(?a rdfs:subClassOf ?c)] |
Discovery of all equivalent concepts in the geological field ontology | @prefix geo: <http://www.semanticweb.org/Geology#> [Rule1:(?a geo:equivalentTerm ?b) ->(?b geo:equivalentTerm ?a)] [Rule2:(?a geo:equivalentTerm ?b) (?b geo:equivalentTerm ?c) ->(?a geo:equivalentTerm ?c)] |
Discover all relevant concepts in the geological field ontology | @prefix geo: <http://www.semanticweb.org/Geology#> [Rule1:(?a geo:relateTerm ?b) ->(?b geo:relateTerm ?a)] |
Discovery of ontological sibling concepts in the geological domain | @prefix syn: <http://www.semanticweb.org/Geology#> [Rule1:(?a rdfs:subClassOf ?b) (?c rdfs:subClassOf ?b) ->(?a geo:siblingTerm ?c)] |
Discover synonyms | @prefix syn: < http://www.semanticweb.org/Synonym#, 2022.10.12> [Rule1:(?a syn:equivalentTo ?b) ->(?b syn:equivalentTo ?a)] [Rule2:(?a syn:equivalentTo ?b) (?b syn:equivalentTo ?c) ->(?a syn:equivalentTo ?c)] |
Discover related words | @prefix syn: < http://www.semanticweb.org/Synonym#> [Rule1:(?a syn:relateTo ?b) ->(?b syn:relateTo ?a)] [Rule2:(?a syn:relateTo ?b) (?b syn:relateTo ?c) ->(?a syn:relateTo ?c)] |
Use | Rule Expression |
---|---|
Discovery of the superior concept of “volcanic rocks” | @prefix geo: <http://www.semanticweb.org/Geology#> [Rule1:(geo: volcanic rocks rdfs:subClassOf ?b) -> (?b geo:broaderClassOf geo: volcanic rocks)] |
Discovery of the subordinate concept of “volcanic rocks” | @prefix geo: <http://www.semanticweb.org/Geology#> [Rule1:(?a rdfs:subClassOf geo: volcanic rocks) (?b rdfs:subClassOf ?a)->(?b rdfs:subClassOf geo: volcanic rocks)] |
Discover all the equivalent concepts of “volcanic rocks” | @prefix geo: <http://www.semanticweb.org/Geology#> [Rule1:(geo: volcanic rocks geo:equivalentTerm ?b) -> (?b geo:equivalentTerm geo: volcanic rocks)] [Rule2:(geo: volcanic rocks geo:equivalentTerm ?b)(?b geo:equivalentTerm ?c)->(geo: volcanic rocks geo:equivalentTerm ?c)] |
Discover all concepts related to “volcanic rocks” | @prefix geo: <http://www.semanticweb.org/Geology#> [Rule1:(geo: volcanic rocks geo:relateTerm ?b) ->(?b geo:relateTerm geo: volcanic rocks)] |
Discover the “volcanic rock” equivalent concept | @prefix geo: <http://www.semanticweb.org/Geology#> [Rule1:(geo: volcanic rocks rdfs:subClassOf ?b) (?c rdfs:subClassOf ?b) ->(geo: volcanic rocks geo:siblingTerm ?c)] |
Discover synonyms for “query” | @prefix syn: < http://www.semanticweb.org/Synonym#> [Rule1:(syn: query syn:equivalentTo ?b) ->(?b syn:equivalentTo syn: query)] [Rule2:(syn: query syn:equivalentTo ?b) (?b syn:equivalentTo ?c) ->(syn: query syn:equivalentTo ?c)] |
Related words for “query” found | @prefix syn: < http://www.semanticweb.org/Synonym#> [Rule1:(syn: query syn:relateTo ?b) ->(?b syn:relateTo syn: query)] [Rule2:(syn: query syn:relateTo ?b) (?b syn:relateTo ?c) ->(syn: query syn:relateTo ?c)] |
No. | Search Terms | Linked Data in Data Sources | Keyword Search | Geological Ontology Search Based on Spatial–Topic Association | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Number of Search Results | Number of Relevant Search Results | Recall (%) | Precision (%) | Total Number of Search Results | Number of Relevant Search Results | Recall (%) | Precision (%) | |||
1 | Bashkurgan copper mine | 25 | 20 | 15 | 60 | 75 | 24 | 20 | 96 | 80 |
2 | Pyrite | 30 | 18 | 10 | 33.3 | 55.6 | 25 | 21 | 83.3 | 70 |
3 | Chalcopyrite | 11 | 6 | 3 | 27 | 50 | 8 | 6 | 72.7 | 54.5 |
4 | Copper polymetallic deposits | 15 | 8 | 4 | 26.7 | 50 | 12 | 10 | 80 | 66.7 |
5 | Zone V copper mine | 16 | 10 | 6 | 37.5 | 60 | 12 | 9 | 75 | 56.3 |
Search Terms | Search Mode | Number of Returns | Effective Number | Number of System-Related | Number of Systems | Precision (%) | Recall (%) |
---|---|---|---|---|---|---|---|
Volcanic rocks | Lucene | 51 | 41 | 48 | 100 | 74.47 | 85.42 |
Semantic | 67 | 40 | 48 | 100 | 68.66 | 83.33 | |
Metamorphic rocks | Lucene | 42 | 29 | 35 | 100 | 61.90 | 82.86 |
Semantic | 40 | 30 | 38 | 100 | 72.50 | 78.95 | |
Sedimentary rocks | Lucene | 59 | 42 | 59 | 100 | 72.88 | 71.19 |
Semantic | 74 | 51 | 77 | 100 | 75.68 | 66.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, L.; Ma, K.; Tian, M.; Hui, Z.; Zheng, S.; Liu, J.; Xie, Z.; Qiu, Q. Developing a Base Domain Ontology from Geoscience Report Collection to Aid in Information Retrieval towards Spatiotemporal and Topic Association. ISPRS Int. J. Geo-Inf. 2024, 13, 14. https://doi.org/10.3390/ijgi13010014
Tao L, Ma K, Tian M, Hui Z, Zheng S, Liu J, Xie Z, Qiu Q. Developing a Base Domain Ontology from Geoscience Report Collection to Aid in Information Retrieval towards Spatiotemporal and Topic Association. ISPRS International Journal of Geo-Information. 2024; 13(1):14. https://doi.org/10.3390/ijgi13010014
Chicago/Turabian StyleTao, Liufeng, Kai Ma, Miao Tian, Zhenyang Hui, Shuai Zheng, Junjie Liu, Zhong Xie, and Qinjun Qiu. 2024. "Developing a Base Domain Ontology from Geoscience Report Collection to Aid in Information Retrieval towards Spatiotemporal and Topic Association" ISPRS International Journal of Geo-Information 13, no. 1: 14. https://doi.org/10.3390/ijgi13010014