Spatial Relationship Analysis of Geographic Elements in Sketch Maps at the Meso and Micro Spatial Scales
Abstract
:1. Introduction
2. Related Work
2.1. Geospatial Data at Multiple Spatial Scales
2.2. Spatial Relationships of Geographic Elements in Sketch Maps
3. Definition of Geographic Elements in Sketch Maps at the Meso and Micro Spatial Scales and Data Acquisition
3.1. Definition of Geographic Elements
3.2. Sketch Map Acquisition at the Meso and Micro Spatial Scales
4. Spatial Relationship Representations of Geographical Elements in Sketch Maps
4.1. Qualitative Orientation Relationship of Landmarks
4.2. Order Relationship of Landmarks along the Main Road
4.3. Qualitative Distance Relationship of Landmarks
4.4. Topological Relationship between Generalized City Blocks and Landmarks
4.5. Evaluation Method
5. Spatial Relationship Representations of Geographical Elements in Sketch Maps
5.1. Spatial Relationship Analysis of Each Sketch Map
5.2. Spatial Relationship Analysis of Sketch Maps at Different Scales
5.3. Overall Evaluation of Spatial Relationships in Sketch Maps
5.4. Meso and Micro Spatial Scale Study Areas in the Same Area
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tversky, B. Cognitive maps, cognitive collages, and spatial mental models. In Proceedings of the European Conference on Spatial Information Theory, Elba, Italy, 19–22 September 1993. [Google Scholar]
- Tversky, B. What do sketches say about thinking. In Proceedings of the 2002 AAAI Spring Symposium on Sketch Understanding, Palo Alto, CA, USA, 25–27 March 2002. [Google Scholar]
- Hátlová, K.; Hanus, M. A systematic review into factors influencing sketch map quality. ISPRS Int. J. Geo-Inf. 2020, 9, 271. [Google Scholar] [CrossRef]
- Boschmann, E.E.; Cubbon, E. Sketch maps and qualitative GIS: Using cartographies of individual spatial narratives in geographic research. Prof. Geogr. 2014, 66, 236–248. [Google Scholar] [CrossRef]
- Schwering, A.; Wang, J.; Chipofya, M.; Jan, S.; Li, R.; Broelemann, K. SketchMapia: Qualitative representations for the alignment of sketch and metric maps. Spat. Cogn. Comput. 2014, 14, 220–254. [Google Scholar] [CrossRef]
- Hubel, D.H. Eye, Brain, and Vision; Scientific American Library/Scientific American Books: Berlin, Germany, 1995. [Google Scholar]
- Golledge, R.G. Human wayfinding and cognitive maps. In The Colonization of Unfamiliar Landscapes; Routledge: Oxfordshire, UK, 2003; pp. 49–54. [Google Scholar]
- Sylvain, B. Quality assessment of generalised geographical data. In Proceedings of the Accuracy 2002: 5th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Melbourne, Australia, 10–12 July 2002. [Google Scholar]
- Worboys, M.F. A generic model for planar geographical objects. Int. J. Geogr. Inf. Sci. 1992, 6, 353–372. [Google Scholar] [CrossRef]
- Chipofya, M.C.; Schultz, C.; Schwering, A. A metaheuristic approach for efficient and effective sketch-tometric map alignment. Int. J. Geogr. Inf. Sci. 2016, 30, 405–425. [Google Scholar] [CrossRef]
- Forbus, K.D.; Usher, J.; Chapman, V. Qualitative spatial reasoning about sketch maps. AI Mag. 2004, 25, 61. [Google Scholar] [CrossRef]
- Wang, J.; Schwering, A. Invariant spatial information in sketch maps-A study of survey sketch maps of urban areas. J. Spat. Inf. Sci. 2015, 11, 31–52. [Google Scholar] [CrossRef]
- Yan, X.; Ai, T.; Zhang, X. Template matching and simplification method for building features based on shape cognition. ISPRS Int. J. Geo-Inf. 2017, 6, 250. [Google Scholar] [CrossRef]
- Lopez, A.; Caffò, A.O.; Postma, A.; Bosco, A. How to separate coordinate and categorical spatial relation components in integrated spatial representations: A new methodology for analysing sketch maps. Scand. J. Psychol. 2020, 61, 607–615. [Google Scholar] [CrossRef]
- Tang, M.; Falomir, Z.; Freksa, C.; Sheng, Y.; Lv, H. Extracting invariant characteristics of sketch maps: Towards place query-by-sketch. Trans. GIS. 2020, 24, 903–943. [Google Scholar] [CrossRef]
- Zare Zardiny, A.; Hakimpour, F.; Shahbazi, M. Sketch maps for searching in spatial data. Trans. GIS. 2020, 24, 780–808. [Google Scholar] [CrossRef]
- Montello, D.R. Scale and multiple psychologies of space. In Proceedings of the European Conference on Spatial Information Theory, Elba, Italy, 19–22 September 1993. [Google Scholar]
- Brewer, C.A.; Buttenfield, B.P. Framing guidelines for multi-scale map design using databases at multiple resolutions. Cartogr. Geogr. Inf. Sci. 2007, 34, 3–15. [Google Scholar] [CrossRef]
- Dabiri, Z.; Blaschke, T. Scale matters: A survey of the concepts of scale used in spatial disciplines. Eur. J. Remote Sens. 2019, 52, 419–434. [Google Scholar] [CrossRef]
- Jones, C.B.; Kidner, D.R. Database design for a multi scale spatial information system. Int. J. Geogr. Inf. Sci. 1996, 10, 901–920. [Google Scholar] [CrossRef]
- Stell, J.; Worboys, M. Stratified Map Spaces: A formal basis for multi-resolution spatial databases. In Proceedings of the 8th International Symposium on Spatial Data Handling, Vancouver, BC, Canada, 11–15 July 1998. [Google Scholar]
- Stoter, J.; Visser, T.; Oosterom, P.V.; Quak, W.; Bakker, N. A semantic-rich multi-scale information model for topography. Int. J. Geogr. Inf. Sci. 2011, 25, 739–763. [Google Scholar] [CrossRef]
- Weibel, R.; Keller, S.; Reichenbacher, T. Overcoming the knowledge acquisition bottleneck in map generalization: The role of interactive systems and computational intelligence. In Proceedings of the 2nd International Conference on Spatial Information Theory (COSIT 95), Semmering, Austria, 21–23 September 1995. [Google Scholar]
- Ai, T.; Cheng, X.; Liu, P.; Yang, M. A shape analysis and template matching of building features by the Fourier transform method. Comput.Environ.Urban. Syst. 2013, 41, 219–233. [Google Scholar] [CrossRef]
- Harrie, L.; Weibel, R. Modelling the overall process of generalisation. In Generalisation of Geographic Information; Elsevier: Amsterdam, The Netherlands, 2007; pp. 67–87. [Google Scholar]
- Timpf, S.; Frank, A.U. A multi-scale DAG for cartographic objects. In Proceedings of the International Symposium on Computer-Assisted Cartography (Auto-Carto XII), Charlotte, NC, USA, 27–29 February 1995. [Google Scholar]
- Battersby, S.E.; Montello, D.R. Area estimation of world regions and the projection of the global-scale cognitive map. Ann. AAG. 2009, 99, 273–291. [Google Scholar] [CrossRef]
- Thommen, E.; Avelar, S.; Sapin, V.Z.; Perrenoud, S.; Malatesta, D. Mapping the journey from home to school: A study on children’s representation of space. Int. Res. Geogr. Enviro. 2010, 19, 191–205. [Google Scholar] [CrossRef]
- Yan, H.; Shen, Y.; Li, J. Approach to calculating spatial similarity degrees of the same river basin networks on multi-scale maps. Geocarto Int. 2016, 31, 765–782. [Google Scholar] [CrossRef]
- Du, S.; Guo, L. Similarity measurements on multi-scale qualitative locations. Trans. GIS. 2015, 20, 824–847. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; MIT Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Egenhofer, M.J. Query processing in spatial-query-by-sketch. J. Vis. Lang. Comput. 1997, 8, 403–424. [Google Scholar] [CrossRef]
- Nedas, K.A.; Egenhofer, M. Spatial-scene similarity queries. Trans. GIS. 2008, 12, 661–681. [Google Scholar] [CrossRef]
- Jan, S.; Schwering, A.; Schultz, C.; Chipofya, M. Cognitively plausible representations for the alignment of sketch and geo-referenced maps. J. Spat. Inf. Sci. 2017, 14, 31–59. [Google Scholar] [CrossRef]
- Spatial Scale. Available online: https://en.wikipedia.org/wiki/Spatial_scale. (accessed on 23 July 2021).
- Baskaya, A.; Wilson, C.; Oezcan, Y.Z. Wayfinding in an unfamiliar environment: Different spatial settings of two polyclinics. Environ. Behav. 2004, 36, 839–867. [Google Scholar] [CrossRef]
- Kulhavy, R.W.; Stock, W.A. How cognitive maps are learned and remembered. Ann. AAG. 1996, 86, 123–145. [Google Scholar] [CrossRef]
- Son, A. The measurement of tourist destination image: Applying a sketch map technique. Int. J. Tour. Res. 2005, 7, 279–294. [Google Scholar] [CrossRef]
- Frank, A.U.; Egenhofer, M.J. Computer cartography for GIS: An object-oriented view on the display transformation. Comput. Geosci. 1992, 18, 975–987. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.; Singh, U.; Gupta, A.; Keshri, A. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]
Relative Distance | Range |
---|---|
SD | (0, 0.3] |
MD | (0.3, 0.7] |
LD | (0.7, 1] |
Spatial Relationships | Accuracy (%) | ||||
---|---|---|---|---|---|
R1 | R2 | R3 | R4 | Overall | |
Qualitative orientation relationship of landmarks | 72.0 | 64.8 | 70.4 | 65.4 | 68.6 |
Order relationship of landmarks along the main road | 67.1 | 64.3 | 69.2 | 72.0 | 67.4 |
Qualitative distance relationship of landmarks | 58.1 | 53.7 | 71.6 | 59.1 | 58.7 |
Topological relationship between generalized city blocks and landmarks | 98.8 | 91.1 | 99.3 | 97.2 | 96.2 |
Spatial Relationships | Sig. | 95% CI | |
---|---|---|---|
Lower Bound | Upper Bound | ||
Qualitative orientation relationship of landmarks | 0.055 | 0.6499 | 0.7147 |
Order relationship of landmarks along the main road | 0.2 | 0.6588 | 0.7311 |
Qualitative distance relationship of landmarks | 0.2 | 0.5069 | 0.5925 |
Topological relationship between generalized city blocks and landmarks | - | 0.9376 | 0.9858 |
Participant Number | Orientation | Order | Distance | Topology |
---|---|---|---|---|
1 | 0.76 | 0.74 | 0.60 | 1 |
3 | 0.76 | 0.85 | 0.58 | 1 |
6 | 0.53 | 0.78 | 0.53 | 1 |
12 | 0.60 | 0.64 | 0.65 | 1 |
13 | 0.62 | 0.65 | 0.71 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Tang, M.; Sheng, Y. Spatial Relationship Analysis of Geographic Elements in Sketch Maps at the Meso and Micro Spatial Scales. ISPRS Int. J. Geo-Inf. 2024, 13, 32. https://doi.org/10.3390/ijgi13010032
Zhang C, Tang M, Sheng Y. Spatial Relationship Analysis of Geographic Elements in Sketch Maps at the Meso and Micro Spatial Scales. ISPRS International Journal of Geo-Information. 2024; 13(1):32. https://doi.org/10.3390/ijgi13010032
Chicago/Turabian StyleZhang, Chen, Ming Tang, and Yehua Sheng. 2024. "Spatial Relationship Analysis of Geographic Elements in Sketch Maps at the Meso and Micro Spatial Scales" ISPRS International Journal of Geo-Information 13, no. 1: 32. https://doi.org/10.3390/ijgi13010032
APA StyleZhang, C., Tang, M., & Sheng, Y. (2024). Spatial Relationship Analysis of Geographic Elements in Sketch Maps at the Meso and Micro Spatial Scales. ISPRS International Journal of Geo-Information, 13(1), 32. https://doi.org/10.3390/ijgi13010032