Optimization of Shared Electric Scooter Deployment Stations Based on Distance Tolerance
Abstract
:1. Introduction
- Introduces a novel MCLP based on distance tolerance for shared E-scooter deployment.
- Introduces a novel algorithm based on DRL to optimize location.
- Evaluates the effectiveness of the model and algorithm through experimentation.
- Provides decision support for optimizing urban micro-mobility layout and vehicle dispatching.
2. Related Works
2.1. Factors Influencing E-Scooter Travel
2.2. Facility Location Problems
2.3. Location Selection Optimization Algorithms
3. Methodology
3.1. Formulation of the Problem
3.2. Distance Tolerance MCLP
- Sets:
- Parameters:
3.3. Deep Reinforcement Learning
4. Experiment
4.1. Study Area
4.2. Extract Potential Demand Points
4.2.1. Divide Study Units
4.2.2. Evaluate Study Unit Demand
4.3. Selecting Candidate Points
4.4. Select Locations for E-Scooters Deployment
4.4.1. Set Parameter
4.4.2. Train the Reinforce Algorithm
4.4.3. Results and Validation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shaheen, S.; Chan, N. Mobility and the sharing economy: Potential to facilitate the first-and last-mile public transit connections. Built Environ. 2016, 42, 573–588. [Google Scholar] [CrossRef]
- Howe, E.; Bock, B. Global Scootersharing Market Report 2018; InnoZ-Innovation Centre for Mobility Societal Change GmbH: Berlin, Germany, 2018. [Google Scholar]
- Crozet, Y.; Santos, G.; Coldefy, J. Shared Mobility and MaaS: The Regulatory Challenges of Urban Mobility; Centre on Regulation in Europe asbl (CERRE): Brussels, Belgium, 2019. [Google Scholar]
- Chang, A.; Miranda-Moreno, L.; Clewlow, R.; Sun, L. Trend or Fad? Deciphering the Enablers of Micromobility in the US; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Shaheen, S.; Cohen, A.; Chan, N.; Bansal, A. Sharing strategies: Carsharing, shared micromobility (bikesharing and scooter sharing), transportation network companies, microtransit, and other innovative mobility modes. In Transportation, Land Use, and Environmental Planning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 237–262. [Google Scholar]
- Mesicek, J.; Jancar, L.; Ma, Q.-P.; Hajnys, J.; Tanski, T.; Krpec, P.; Pagac, M. Comprehensive view of topological optimization scooter frame design and manufacturing. Symmetry 2021, 13, 1201. [Google Scholar] [CrossRef]
- Oeschger, G.; Carroll, P.; Caulfield, B. Micromobility and public transport integration: The current state of knowledge. Transp. Res. Part D Transp. Environ. 2020, 89, 102628. [Google Scholar] [CrossRef]
- Sanders, R.L.; Branion-Calles, M.; Nelson, T.A. To scoot or not to scoot: Findings from a recent survey about the benefits and barriers of using E-scooters for riders and non-riders. Transp. Res. Part A Policy Pract. 2020, 139, 217–227. [Google Scholar] [CrossRef]
- Fazio, M.; Giuffrida, N.; Le Pira, M.; Inturri, G.; Ignaccolo, M. Planning suitable transport networks for e-scooters to foster micromobility spreading. Sustainability 2021, 13, 11422. [Google Scholar] [CrossRef]
- Schellong, D.; Sadek, P.; Schaetzberger, C.; Barrack, T. The Promise and Pitfalls of E-Scooter Sharing; Boston Consulting Group: Boston, MA, USA, 2019. [Google Scholar]
- Glenn, J.; Bluth, M.; Christianson, M.; Pressley, J.; Taylor, A.; Macfarlane, G.S.; Chaney, R.A. Considering the potential health impacts of electric scooters: An analysis of user reported behaviors in Provo, Utah. Int. J. Environ. Res. Public Health 2020, 17, 6344. [Google Scholar] [CrossRef] [PubMed]
- James, O.; Swiderski, J.; Hicks, J.; Teoman, D.; Buehler, R. Pedestrians and e-scooters: An initial look at e-scooter parking and perceptions by riders and non-riders. Sustainability 2019, 11, 5591. [Google Scholar] [CrossRef]
- Zou, Z.; Younes, H.; Erdoğan, S.; Wu, J. Exploratory analysis of real-time e-scooter trip data in Washington, DC. Transp. Res. Rec. 2020, 2674, 285–299. [Google Scholar] [CrossRef]
- Jiao, J.; Bai, S. Understanding the shared e-scooter travels in Austin, TX. ISPRS Int. J. Geo-Inf. 2020, 9, 135. [Google Scholar] [CrossRef]
- Bai, S.; Jiao, J. Dockless E-scooter usage patterns and urban built Environments: A comparison study of Austin, TX, and Minneapolis, MN. Travel Behav. Soc. 2020, 20, 264–272. [Google Scholar] [CrossRef]
- Orr, B.; MacArthur, J.; Dill, J. The Portland E-Scooter Experience; Pennsylvania State University Transportation Seminars: University Park, PA, USA, 2019. [Google Scholar]
- Hosseinzadeh, A.; Karimpour, A.; Kluger, R. Factors influencing shared micromobility services: An analysis of e-scooters and bikeshare. Transp. Res. Part D Transp. Environ. 2021, 100, 103047. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, X.; Chua, K.; Yu, H.; Zhao, J. E-scooter sharing to serve short-distance transit trips: A Singapore case. Transp. Res. Part A Policy Pract. 2021, 147, 177–196. [Google Scholar] [CrossRef]
- Laa, B.; Leth, U. Survey of E-scooter users in Vienna: Who they are and how they ride. J. Transp. Geogr. 2020, 89, 102874. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Algomaiah, M.; Kluger, R.; Li, Z. Spatial analysis of shared e-scooter trips. J. Transp. Geogr. 2021, 92, 103016. [Google Scholar] [CrossRef]
- Kharaghani, H.; Etemadfard, H.; Golmohammadi, M. Spatio-temporal Analysis of Precipitation Effects on Bicycle-Sharing Systems with Tensor Approach. J. Geovisualization Spat. Anal. 2023, 7, 30. [Google Scholar] [CrossRef]
- Abouelela, M.; Chaniotakis, E.; Antoniou, C. Understanding the landscape of shared-e-scooters in North America; Spatiotemporal analysis and policy insights. Transp. Res. Part A Policy Pract. 2023, 169, 103602. [Google Scholar] [CrossRef]
- Kimpton, A.; Loginova, J.; Pojani, D.; Bean, R.; Sigler, T.; Corcoran, J. Weather to scoot? How weather shapes shared e-scooter ridership patterns. J. Transp. Geogr. 2022, 104, 103439. [Google Scholar] [CrossRef]
- Noland, R.B. Trip patterns and revenue of shared e-scooters in Louisville, Kentucky. Findings 2019. [Google Scholar] [CrossRef] [PubMed]
- Noland, R.B. Scootin’in the rain: Does weather affect micromobility? Transp. Res. Part A Policy Pract. 2021, 149, 114–123. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Eluru, N.; El-Geneidy, A.M.; Rabbat, M.; Haq, U. How land-use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal. J. Transp. Geogr. 2014, 41, 306–314. [Google Scholar] [CrossRef]
- Noland, R.B.; Smart, M.J.; Guo, Z. Bikeshare trip generation in New York city. Transp. Res. Part A Policy Pract. 2016, 94, 164–181. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, L.; Wang, G.S. Factors influencing users’ subjective well-being: An empirical study based on shared bicycles in China. Inf. Discov. Deliv. 2017, 45, 202–211. [Google Scholar] [CrossRef]
- Caspi, O.; Smart, M.J.; Noland, R.B. Spatial associations of dockless shared e-scooter usage. Transp. Res. Part D Transp. Environ. 2020, 86, 102396. [Google Scholar] [CrossRef] [PubMed]
- Altintasi, O.; Yalcinkaya, S. Siting charging stations and identifying safe and convenient routes for environmentally sustainable e-scooter systems. Sustain. Cities Soc. 2022, 84, 104020. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Su, C.; Zhou, L.; Wang, W.; Liang, H. Optimization of shared bicycle location in Wuhan city based on multi-source geospatial big data. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Spatial Big Data and AI for Industrial Applications, Hamburg, Germany, 13 November 2023; pp. 43–46. [Google Scholar]
- Yu, Q.; Gu, Y.; Yang, S.; Zhou, M. Discovering spatiotemporal patterns and urban facilities determinants of cycling activities in Beijing. J. Geovisualization Spat. Anal. 2021, 5, 16. [Google Scholar] [CrossRef]
- Bieliński, T.; Ważna, A. Electric scooter sharing and bike sharing user behaviour and characteristics. Sustainability 2020, 12, 9640. [Google Scholar] [CrossRef]
- McKenzie, G. Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, DC. J. Transp. Geogr. 2019, 78, 19–28. [Google Scholar] [CrossRef]
- Jin, S.T.; Wang, L.; Sui, D. How the built environment affects E-scooter sharing link flows: A machine learning approach. J. Transp. Geogr. 2023, 112, 103687. [Google Scholar] [CrossRef]
- Huo, J.; Yang, H.; Li, C.; Zheng, R.; Yang, L.; Wen, Y. Influence of the built environment on E-scooter sharing ridership: A tale of five cities. J. Transp. Geogr. 2021, 93, 103084. [Google Scholar] [CrossRef]
- Guevara, C.A. Mode-valued differences of in-vehicle travel time savings. Transportation 2017, 44, 977–997. [Google Scholar] [CrossRef]
- Ekstrom, A.D.; Arnold, A.E.; Iaria, G. A critical review of the allocentric spatial representation and its neural underpinnings: Toward a network-based perspective. Front. Hum. Neurosci. 2014, 8, 803. [Google Scholar] [CrossRef]
- Zhong, E. Deep Mapping—A Critical Engagement of Cartography with Neuroscience. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1988–2002. [Google Scholar]
- El-Geneidy, A.; Grimsrud, M.; Wasfi, R.; Tétreault, P.; Surprenant-Legault, J. New evidence on walking distances to transit stops: Identifying redundancies and gaps using variable service areas. Transportation 2014, 41, 193–210. [Google Scholar] [CrossRef]
- Mateo-Babiano, I.; Bean, R.; Corcoran, J.; Pojani, D. How does our natural and built environment affect the use of bicycle sharing? Transp. Res. Part A Policy Pract. 2016, 94, 295–307. [Google Scholar] [CrossRef]
- Bachand-Marleau, J.; Lee, B.H.; El-Geneidy, A.M. Better understanding of factors influencing likelihood of using shared bicycle systems and frequency of use. Transp. Res. Rec. 2012, 2314, 66–71. [Google Scholar] [CrossRef]
- Kabra, A.; Belavina, E.; Girotra, K. Bike-share systems: Accessibility and availability. Manag. Sci. 2020, 66, 3803–3824. [Google Scholar] [CrossRef]
- Reck, D.J.; Martin, H.; Axhausen, K.W. Mode choice, substitution patterns and environmental impacts of shared and personal micro-mobility. Transp. Res. Part D Transp. Environ. 2022, 102, 103134. [Google Scholar] [CrossRef]
- Aguilera-García, Á.; Gomez, J.; Sobrino, N.; Vinagre Díaz, J.J. Moped scooter sharing: Citizens’ perceptions, users’ behavior, and implications for urban mobility. Sustainability 2021, 13, 6886. [Google Scholar] [CrossRef]
- Christoforou, Z.; de Bortoli, A.; Gioldasis, C.; Seidowsky, R. Who is using e-scooters and how? Evidence from Paris. Transp. Res. Part D Transp. Environ. 2021, 92, 102708. [Google Scholar] [CrossRef]
- Reck, D.J.; Haitao, H.; Guidon, S.; Axhausen, K.W. Explaining shared micromobility usage, competition and mode choice by modelling empirical data from Zurich, Switzerland. Transp. Res. Part C Emerg. Technol. 2021, 124, 102947. [Google Scholar] [CrossRef]
- Carroll, P. Perceptions of Electric Scooters Prior to Legalisation: A Case Study of Dublin, Ireland, the ‘Final Frontier’of Adopted E-Scooter Use in Europe. Sustainability 2022, 14, 11376. [Google Scholar] [CrossRef]
- Wincent, B.B.; Jenelius, E.; Burghout, W. Access distance to e-scooters: Analysis of app use and trip data in Stockholm. J. Cycl. Micromobil. Res. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Younes, H.; Zou, Z.; Wu, J.; Baiocchi, G. Comparing the temporal determinants of dockless scooter-share and station-based bike-share in Washington, DC. Transp. Res. Part A Policy Pract. 2020, 134, 308–320. [Google Scholar] [CrossRef]
- Guidon, S.; Becker, H.; Dediu, H.; Axhausen, K.W. Electric bicycle-sharing: A new competitor in the urban transportation market? An empirical analysis of transaction data. Transp. Res. Rec. 2019, 2673, 15–26. [Google Scholar] [CrossRef]
- Du, Y.; Deng, F.; Liao, F. A model framework for discovering the spatio-temporal usage patterns of public free-floating bike-sharing system. Transp. Res. Part C Emerg. Technol. 2019, 103, 39–55. [Google Scholar] [CrossRef]
- Hakimi, S.L. Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 1965, 13, 462–475. [Google Scholar] [CrossRef]
- Toregas, C.; Swain, R.; ReVelle, C.; Bergman, L. The location of emergency service facilities. Oper. Res. 1971, 19, 1363–1373. [Google Scholar] [CrossRef]
- Church, R.; ReVelle, C. The maximal covering location problem. Pap. Reg. Sci. Assoc. 1974, 32, 101–118. [Google Scholar] [CrossRef]
- García-Palomares, J.C.; Gutiérrez, J.; Latorre, M. Optimizing the location of stations in bike-sharing programs: A GIS approach. Appl. Geogr. 2012, 35, 235–246. [Google Scholar] [CrossRef]
- Karatas, M.; Razi, N.; Tozan, H. A multi-criteria assessment of the p-median, maximal coverage and p-center location models. Teh. Vjesn. 2017, 24 (Suppl. 2), 399–407. [Google Scholar] [CrossRef]
- Conrow, L.; Murray, A.T.; Fischer, H.A. An optimization approach for equitable bicycle share station siting. J. Transp. Geogr. 2018, 69, 163–170. [Google Scholar] [CrossRef]
- Frade, I.; Ribeiro, A. Bike-sharing stations: A maximal covering location approach. Transp. Res. Part A Policy Pract. 2015, 82, 216–227. [Google Scholar] [CrossRef]
- Li, H.; Mukhopadhyay, S.K.; Wu, J.-J.; Zhou, L.; Du, Z. Balanced maximal covering location problem and its application in bike-sharing. Int. J. Prod. Econ. 2020, 223, 107513. [Google Scholar] [CrossRef]
- Ebrahimi, Z.D.; Momenitabar, M.; Nasri, A.A.; Mattson, J. Using a GIS-based spatial approach to determine the optimal locations of bikeshare stations: The case of Washington DC. Transp. Policy 2022, 127, 48–60. [Google Scholar] [CrossRef]
- Mix, R.; Hurtubia, R.; Raveau, S. Optimal location of bike-sharing stations: A built environment and accessibility approach. Transp. Res. Part A Policy Pract. 2022, 160, 126–142. [Google Scholar] [CrossRef]
- Beairsto, J.; Tian, Y.; Zheng, L.; Zhao, Q.; Hong, J. Identifying locations for new bike-sharing stations in Glasgow: An analysis of spatial equity and demand factors. Ann. GIS 2022, 28, 111–126. [Google Scholar] [CrossRef]
- Chen, W.; Chen, X.; Cheng, L.; Chen, J.; Tao, S. Locating new docked bike sharing stations considering demand suitability and spatial accessibility. Travel Behav. Soc. 2024, 34, 100675. [Google Scholar] [CrossRef]
- Gunawardane, G. Dynamic versions of set covering type public facility location problems. Eur. J. Oper. Res. 1982, 10, 190–195. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, F.; Kwan, M.-P.; Wang, K.; Zuo, Z.; Xia, S.; Zhang, Z.; Zhao, X. Space-time demand cube for spatial-temporal coverage optimization model of shared bicycle system: A study using big bike GPS data. J. Transp. Geogr. 2020, 88, 102861. [Google Scholar] [CrossRef]
- Sakti, A.D.; Zakiar, M.R.; Santoso, C.; Windasari, N.A.; Jaelani, A.T.; Damayanti, S.; Anggraini, T.S.; Putri, A.D.; Hudalah, D.; Deliar, A. Machine learning-based spatial data development for optimizing astronomical observatory sites in Indonesia. PLoS ONE 2023, 18, e0293190. [Google Scholar] [CrossRef]
- Widaningrum, D.L. GIS and SVM approach for convenience store location analysis. In Proceedings of the 9th International Conference on Machine Learning and Computing, Singapore, 24–26 February 2017; pp. 112–116. [Google Scholar]
- Zhou, Y.; Wang, L.; Zhong, R.; Tan, Y. A Markov chain based demand prediction model for stations in bike sharing systems. Math. Probl. Eng. 2018, 2018, 8. [Google Scholar] [CrossRef]
- Ham, S.W.; Cho, J.-H.; Park, S.; Kim, D.-K. Spatiotemporal demand prediction model for e-scooter sharing services with latent feature and deep learning. Transp. Res. Rec. 2021, 2675, 34–43. [Google Scholar] [CrossRef]
- Luo, Y.; Zhong, J.; Liu, W.-L.; Chen, W.-N. Automatic Business Location Selection through Particle Swarm Optimization and Neural Network. In Proceedings of the 2023 15th International Conference on Advanced Computational Intelligence (ICACI), Seoul, Republic of Korea, 6–9 May 2023; pp. 1–8. [Google Scholar]
- Wang, L.; Fan, H.; Wang, Y. Site selection of retail shops based on spatial accessibility and hybrid BP neural network. ISPRS Int. J. Geo-Inf. 2018, 7, 202. [Google Scholar] [CrossRef]
- Liang, H.; Wang, S.; Li, H.; Ye, H.; Zhong, Y. A Trade-Off Algorithm for Solving p-Center Problems with a Graph Convolutional Network. ISPRS Int. J. Geo-Inf. 2022, 11, 270. [Google Scholar] [CrossRef]
- Golsefidi, A.H.; Hüttel, F.B.; Peled, I.; Samaranayake, S.; Pereira, F.C. A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure. Transp. Res. Part A Policy Pract. 2023, 178, 103863. [Google Scholar] [CrossRef]
- Wang, C.; Han, C.; Guo, T.; Ding, M. Solving uncapacitated P-Median problem with reinforcement learning assisted by graph attention networks. Appl. Intell. 2023, 53, 2010–2025. [Google Scholar] [CrossRef]
- Wang, S.; Liang, H.; Zhong, Y.; Zhang, X.; Su, C. DeepMCLP: Solving the MCLP with deep reinforcement learning for urban facility location analytics. UC Santa Barbar. Cent. Spat. Stud. 2023. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, J.; Liang, H.; Wang, Z.; Su, C.; Li, X. A New Approach for Solving Location Routing Problems with Deep Reinforcement Learning of Emergency Medical Facility. In Proceedings of the 8th ACM SIGSPATIAL International Workshop on Security Response Using GIS, Hamburg, Germany, 13 November 2023; pp. 50–53. [Google Scholar]
- Liang, H.; Wang, S.; Li, H.; Zhou, L.; Chen, H.; Zhang, X.; Chen, X. Sponet: Solve spatial optimization problem using deep reinforcement learning for urban spatial decision analysis. Int. J. Digit. Earth 2024, 17, 2299211. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, S.; Liang, H.; Wang, Z.; Zhang, X.; Chen, X.; Su, C. ReCovNet: Reinforcement learning with covering information for solving maximal coverage billboards location problem. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103710. [Google Scholar] [CrossRef]
- Sandoval, R.; Van Geffen, C.; Wilbur, M.; Hall, B.; Dubey, A.; Barbour, W.; Work, D.B. Data driven methods for effective micromobility parking. Transp. Res. Interdiscip. Perspect. 2021, 10, 100368. [Google Scholar] [CrossRef]
- Kaya, Ö.; Alemdar, K.D.; Atalay, A.; Çodur, M.Y.; Tortum, A. Electric car sharing stations site selection from the perspective of sustainability: A GIS-based multi-criteria decision making approach. Sustain. Energy Technol. Assess. 2022, 52, 102026. [Google Scholar] [CrossRef]
- Deveci, M.; Gokasar, I.; Pamucar, D.; Chen, Y.; Coffman, D.M. Sustainable E-scooter parking operation in urban areas using fuzzy Dombi based RAFSI model. Sustain. Cities Soc. 2023, 91, 104426. [Google Scholar] [CrossRef]
- Altay, B.C.; Celik, E.; Okumus, A.; Balin, A.; Gul, M. An integrated interval type-2 fuzzy BWM-MARCOS model for location selection of e-scooter sharing stations: The case of a university campus. Eng. Appl. Artif. Intell. 2023, 122, 106095. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, C.; Zhang, M.; Hao, C. Time-satisfaction-based maximal covering location problem. Chin. J. Manag. Sci. 2006, 14, 45–51. [Google Scholar]
- Cohon, J.L. Multiobjective Programming and Planning; Courier Corporation: North Chelmsford, MA, USA, 2004; Volume 140. [Google Scholar]
- Kool, W.; Van Hoof, H.; Welling, M. Attention, learn to solve routing problems! arXiv 2018, arXiv:1803.08475. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- City of Chicago Announces E-Scooter Pilot Program and Call for Vendors. Available online: https://www.cbsnews.com/chicago/news/city-of-chicago-announces-e-scooter-pilot-program-and-call-for-vendors/?intcid=CNM-00-10abd1h (accessed on 2 May 2019).
- Chicago Data Portal. Available online: https://data.cityofchicago.org/ (accessed on 14 March 2024).
- Liu, M.; Seeder, S.; Li, H. Analysis of e-scooter trips and their temporal usage patterns. Inst. Transp. Eng. ITE J. 2019, 89, 44–49. [Google Scholar]
- Tuli, F.M.; Mitra, S.; Crews, M.B. Factors influencing the usage of shared E-scooters in Chicago. Transp. Res. Part A Policy Pract. 2021, 154, 164–185. [Google Scholar] [CrossRef]
- Daniel, C.B.; Mathew, S.; Subbarayan, S. GIS-based study on the association between road centrality and socio-demographic parameters: A case study. J. Geovisualization Spat. Anal. 2022, 6, 1. [Google Scholar] [CrossRef]
- Gu, Y.; Jiao, L.; Dong, T.; Wang, Y.; Xu, G. Spatial Distribution and Interaction Analysis of Urban Functional Areas Based on Multi-source Data. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1113–1121. [Google Scholar] [CrossRef]
- Hong, Y.; Yao, Y. Hierarchical community detection and functional area identification with OSM roads and complex graph theory. Int. J. Geogr. Inf. Sci. 2019, 33, 1569–1587. [Google Scholar] [CrossRef]
- Hu, S.; Gao, S.; Wu, L.; Xu, Y.; Zhang, Z.; Cui, H.; Gong, X. Urban function classification at road segment level using taxi trajectory data: A graph convolutional neural network approach. Comput. Environ. Urban Syst. 2021, 87, 101619. [Google Scholar] [CrossRef]
- Wang, J.; Ye, Y.; Fang, F. A Study of Urban Functional Zoning Based on Kernel Density Estimation and Fusion Data. Geogr. Geo-Inf. Sci. 2019, 35, 66–71. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, H.; Wang, C. Research on Urban Functional Area Recognition Integrating OSM Road Network and POl Data. Geogr. Geo-Inf. Sci. 2020, 36, 57–63. [Google Scholar] [CrossRef]
- Illinois Department of Transportation. Available online: https://idot.illinois.gov/ (accessed on 14 March 2024).
- Chicago Metropolitan Agency for Planning. Available online: www.cmap.illinois.gov (accessed on 14 March 2024).
- WorldPop. Available online: https://hub.worldpop.org/geodata/listing?id=92 (accessed on 14 March 2024).
- Guler, D.; Yomralioglu, T. Bicycle station and lane location selection using open source GIS technology. In Open Source Geospatial Science for Urban Studies: The Value of Open Geospatial Data; Springer: Berlin/Heidelberg, Germany, 2020; pp. 9–36. [Google Scholar]
- Guler, D.; Yomralioglu, T. Location evaluation of bicycle sharing system stations and cycling infrastructures with best worst method using GIS. Prof. Geogr. 2021, 73, 535–552. [Google Scholar] [CrossRef]
Base Data | Derived Criteria | Min (m) | Max (m) | Weight |
---|---|---|---|---|
Railway stations | Distance to railway stations | 500 | 0 | 0.0675 |
Metro stations | Distance to metro stations | 500 | 0 | 0.1722 |
Bus stations | Distance to bus stations | 500 | 0 | 0.1722 |
Bicycle stations | Distance to bicycle stations | 100 | 0 | 0.0285 |
Sidewalks | Distance to sidewalks | 100 | 0 | 0.0317 |
Population | Density population | min | max | 0.0828 |
Shopping mall | Distance to shopping mall | 1000 | 0 | 0.1468 |
Pedestrian streets | Distance to pedestrian streets | 500 | 0 | 0.0372 |
Parks | Distance to parks | 1000 | 0 | 0.0575 |
National landmarks | Distance to national landmarks | 1000 | 0 | 0.0654 |
Hospitals | Distance to hospitals | 1000 | 0 | 0.0255 |
Schools | Distance to schools | 500 | 0 | 0.0917 |
Industries | Distance to industries | 500 | 0 | 0.0210 |
Radius (m) | 200 | 250 | 300 |
Coverage rate (%) | 32.98 | 46.71 | 59.45 |
Solving Method | Solving Time (s) | Objective Value | Coverage Rate (%) |
---|---|---|---|
DRL | 0.47 | 73.10 | 16.58 |
Gurobi | 13.50 | 74.21 | 16.88 |
GA | 2.83 | 71.12 | 16.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, J.; Long, Y.; Wang, S.; Liang, H. Optimization of Shared Electric Scooter Deployment Stations Based on Distance Tolerance. ISPRS Int. J. Geo-Inf. 2024, 13, 147. https://doi.org/10.3390/ijgi13050147
Yue J, Long Y, Wang S, Liang H. Optimization of Shared Electric Scooter Deployment Stations Based on Distance Tolerance. ISPRS International Journal of Geo-Information. 2024; 13(5):147. https://doi.org/10.3390/ijgi13050147
Chicago/Turabian StyleYue, Jianwei, Yingqiu Long, Shaohua Wang, and Haojian Liang. 2024. "Optimization of Shared Electric Scooter Deployment Stations Based on Distance Tolerance" ISPRS International Journal of Geo-Information 13, no. 5: 147. https://doi.org/10.3390/ijgi13050147