A Novel Rock Mass Discontinuity Detection Approach with CNNs and Multi-View Image Augmentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Characteristics
2.2. The Overall Workflow
2.3. Photogrammetric Processing
2.4. Data Augmentation Techniques and Training Data Preparation
2.5. The CNN Models
2.5.1. Training from Scratch with Local Features
2.5.2. Transfer Learning with Domain Adaptation
2.6. Validation
3. Results
3.1. Qualitative Assessments
3.2. Quantitative Results
4. Discussions
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID | Lithological Unit | Area (km2) |
---|---|---|
1 | Dizilitaslar formation: Conglomerate, sandstone, and claystone | 504.66 |
2 | Evciler Volcanics: Basaltic lava and pyroclastics | 138.29 |
3 | Ic anadolu group: Undifferentiated middle miocene–pliocene continental sediments | 740.43 |
4 | Cavuslu volcanics: Basalt and spilitic basalt | 28.67 |
5 | Incik formation: Conglomerate, sandstone, mudstone, and gypsum | 89.52 |
6 | Limestone blocks of Triassic age | 3.96 |
7 | Orta Anadolu granitoids: Granite, granodiorite, and monzonite | 18.83 |
8 | Golbasi formation: Conglomerate, sandstone, and mudstone | 0.61 |
9 | Basalt | 1.43 |
10 | Sekili evaporite member: Gypsum, anhydrite, mudstone, and sandstone | 3.40 |
11 | Barakli formation: Continental conglomerate, sandstone, and mudstone | 7.25 |
12 | Artova ophiolitic melange: Serpantinite, harzburgite, dunite, gabbro, diabase, radiolarite, chert, and limestone | 1.25 |
13 | Cayraz formation: Conglomerate, sandstone, claystone, limestone, and mudstone | 22.90 |
14 | Alluvium | 287.47 |
15 | Kumartas formation: Conglomerate, sandstone, and siltstone | 35.89 |
16 | Hancili formation: Sandstone, siltstone, marl, clayey limestone, tuff, and gypsum | 23.96 |
17 | Tohumlar volcanics: Dacite, rhyolite, and pyroclastics | 5.69 |
18 | Ophiolitic melange | 41.10 |
References
- Bostanci, H.T.; Alemdag, S.; Gurocak, Z.; Gokceoglu, C. Combination of discontinuity characteristics and GIS for regional assessment of natural rock slopes in a mountainous area (NE Turkey). Catena 2018, 165, 487–502. [Google Scholar] [CrossRef]
- AFAD. AFAD (Disaster and Emergency Management Pesidency). Available online: https://www.afad.gov.tr/kurumlar/afad.gov.tr/e_Kutuphane/Istatistikler/2022-Yili-Doga-Kaynakli-Olay-Istatistikleri.pdf (accessed on 31 July 2023).
- Gokceoglu, C. 6 February 2023 Kahramanmaraş—Türkiye Earthquakes: A General Overview. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-1-2023, 417–424. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Barton, N. Some new Q-value correlations to assist in site characterisation and tunnel design. Int. J. Rock Mech. Min. Sci. 2002, 39, 185–216. [Google Scholar] [CrossRef]
- ISRM. Rock Characterization, Testing and Monitoring: ISRM Suggested Methods; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Zhang, Q.; Huang, X.; Zhu, H.; Li, J. Quantitative assessments of the correlations between rock mass rating (RMR) and geological strength index (GSI). Tunn. Undergr. Space Technol. 2019, 83, 73–81. [Google Scholar] [CrossRef]
- Priest, S.D.; Hudson, J.A. Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1981, 18, 183–197. [Google Scholar] [CrossRef]
- Pahl, P.J. Estimating the mean length of discontinuity traces. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1981, 18, 221–228. [Google Scholar] [CrossRef]
- Watkins, H.; Bond, C.E.; Healy, D.; Butler, R.W.H. Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop. J. Struct. Geol. 2015, 72, 67–82. [Google Scholar] [CrossRef]
- ISRM. International society for rock mechanics commission on standardization of laboratory and field tests: Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 319–368. [Google Scholar] [CrossRef]
- Battulwar, R.; Zare-Naghadehi, M.; Emami, E.; Sattarvand, J. A state-of-the-art review of automated extraction of rock mass discontinuity characteristics using three-dimensional surface models. J. Rock Mech. Geotech. Eng. 2021, 13, 920–936. [Google Scholar] [CrossRef]
- Riquelme, A.; Cano, M.; Tomás, R.; Abellán, A. Identification of Rock Slope Discontinuity Sets from Laser Scanner and Photogrammetric Point Clouds: A Comparative Analysis. Procedia Eng. 2017, 191, 838–845. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Modeling the World from Internet Photo Collections. Int. J. Comput. Vis. 2008, 80, 189–210. [Google Scholar] [CrossRef]
- Salvini, R.; Vanneschi, C.; Coggan, J.S.; Mastrorocco, G. Evaluation of the Use of UAV Photogrammetry for Rock Discontinuity Roughness Characterization. Rock Mech. Rock Eng. 2020, 53, 3699–3720. [Google Scholar] [CrossRef]
- Kong, D.; Saroglou, C.; Wu, F.; Sha, P.; Li, B. Development and application of UAV-SfM photogrammetry for quantitative characterization of rock mass discontinuities. Int. J. Rock Mech. Min. Sci. 2021, 141, 104729. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, W.; Chai, B.; Du, J.; Tang, L.; Yi, X. Discontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry. Comput. Geosci. 2022, 166, 105191. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Yong, R.; Wang, C.; An, P. Drone Photogrammetry for Accurate and Efficient Rock Joint Roughness Assessment on Steep and Inaccessible Slopes. Remote Sens. 2023, 15, 4880. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Abellán, A.; Tomás, R.; Jaboyedoff, M. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput. Geosci. 2014, 68, 38–52. [Google Scholar] [CrossRef]
- Liu, H.; Yao, M.; Xiao, X.; Xiong, Y. RockFormer: A U-shaped transformer network for Martian rock segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Ozturk, H.S.; Kocaman, S.; Gokceoglu, C. A low-cost approach for determination of discontinuity orientation using smartphone images and application to a part of Ihlara Valley (Central Turkey). Eng. Geol. 2019, 254, 63–75. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, Q. A non-contact measurement method for rock mass discontinuity orientations by smartphone. J. Rock Mech. Geotech. Eng. 2022, 15, 2892–2900. [Google Scholar] [CrossRef]
- An, P.; Fang, K.; Zhang, Y.; Jiang, Y.; Yang, Y. Assessment of the trueness and precision of smartphone photogrammetry for rock joint roughness measurement. Measurement 2022, 188, 110598. [Google Scholar] [CrossRef]
- Lee, Y.K.; Kim, J.; Choi, C.S.; Song, J.J. Semi-automatic calculation of joint trace length from digital images based on deep learning and data structuring techniques. Int. J. Rock Mech. Min. Sci. 2022, 149, 104981. [Google Scholar] [CrossRef]
- Qiu, L.; Tang, L.; Zhong, R. Toward the recognition of spacecraft feature components: A new benchmark and a new model. Astrodynamics 2022, 6, 237–248. [Google Scholar] [CrossRef]
- Yalcin, I.; Can, R.; Kocaman, S.; Gokceoglu, C. A CNN Architecture for Discontinuity Determination of Rock Masses with Close Range Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B2-2022, 1101–1108. [Google Scholar] [CrossRef]
- Yalcin, I.; Can, R.; Kocaman, S.; Gokceoglu, C. Rock Mass Discontinuity Determination With Transfer Learning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M-1-2023, 609–614. [Google Scholar] [CrossRef]
- Buyukdemircioglu, M.; Can, R.; Kocaman, S.; Kada, M. Deep learning based building footprint extraction from very high resolution true orthophotos and nDSM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 2, 211–218. [Google Scholar] [CrossRef]
- Sawa, K.; Yalcin, I.; Kocaman, S. Building Detection from SkySat Images with Transfer Learning: A Case Study over Ankara. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2024, 92, 163–175. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Farahani, A.; Voghoei, S.; Rasheed, K.; Arabnia, H.R. A brief review of domain adaptation. Adv. Data Sci. Inf. Eng. 2021, 877–894. [Google Scholar] [CrossRef]
- Donmez, M.; Akcay, A.E.; Kara, H.; Yergok, A.F.; Esenturk, K. Geological maps of Turkey; General Directorate Mineral Research and Exploration: Ankara, Türkiye, 2008; p. 26. [Google Scholar]
- DJI. Available online: https://ag.dji.com/phantom-4-rtk/specs (accessed on 22 June 2023).
- Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Coastal Mapping Using DJI Phantom 4 RTK in Post-Processing Kinematic Mode. Drones 2020, 4, 9. [Google Scholar] [CrossRef]
- Agisoft. Available online: https://www.agisoft.com/ (accessed on 8 July 2023).
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- He, T.; Zhang, Z.; Zhang, H.; Zhang, Z.; Xie, J.; Li, M. Bag of Tricks for Image Classification with Convolutional Neural Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 558–567. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. Available online: https://dl.acm.org/doi/10.5555/2627435.2670313 (accessed on 20 May 2024).
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Yang, S.; Xiao, W.; Zhang, M.; Guo, S.; Zhao, J.; Shen, F. Image Data Augmentation for Deep Learning: A Survey. arXiv 2022, arXiv:2204.08610. [Google Scholar] [CrossRef]
- Albumentations. Available online: https://albumentations.ai/ (accessed on 8 July 2023).
- Mikhail, E.M.; Bethel, J.S.; McGlone, J.C. Introduction to Modern Photogrammetry; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Wolf, P.R.; Dewitt, B.A.; Wilkinson, B.E. Elements of Photogrammetry with Applications in GIS, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Ramasamy, G.; Singh, T.; Yuan, X. Multi-Modal Semantic Segmentation Model using Encoder Based Link-Net Architecture for BraTS 2020 Challenge. Procedia Comput. Sci. 2023, 218, 732–740. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Kai, L.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. ADAM: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Li, X.; He, M.; Li, H.; Shen, H. A Combined Loss-Based Multiscale Fully Convolutional Network for High-Resolution Remote Sensing Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2009; p. 60. [Google Scholar]
- Alzubaidi, L.; Al-Shamma, O.; Fadhel, M.A.; Farhan, L.; Zhang, J.; Duan, Y. Optimizing the Performance of Breast Cancer Classification by Employing the Same Domain Transfer Learning from Hybrid Deep Convolutional Neural Network Model. Electronics 2020, 9, 445. [Google Scholar] [CrossRef]
- Kaggle. Available online: https://www.kaggle.com/datasets/lakshaymiddha/crack-segmentation-dataset (accessed on 27 July 2023).
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Al-antari, M.A.; Al-masni, M.A.; Choi, M.T.; Han, S.M.; Kim, T.S. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int. J. Med. Inform. 2018, 117, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 2016, 36, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, X.; Pan, X.; Wei, M.; Yan, J.; Chen, J. Characterization of high and steep slopes and 3D rockfall statistical kinematic analysis for Kangyuqu area, China. Eng. Geol. 2022, 308, 106807. [Google Scholar] [CrossRef]
- Byun, H.; Kim, J.; Yoon, D.; Kang, I.S.; Song, J.J. A deep convolutional neural network for rock fracture image segmentation. Earth Sci. Inform. 2021, 14, 1937–1951. [Google Scholar] [CrossRef]
- Asadi, M.; Sadeghi, M.T.; Bafghi, A.Y. A Multi-Classifier System for Rock Mass Crack Segmentation Based on Convolutional Neural Networks. In Proceedings of the 2021 26th International Computer Conference, Computer Society of Iran (CSICC), Tehran, Iran, 3–4 March 2021; pp. 1–6. [Google Scholar]
- Kim, J.; Lee, Y.K.; Choi, C.S.; Fereshtenejad, S.; Song, J.J. Scanline intersection similarity: A similarity metric for joint trace maps. Comput. Geosci. 2023, 175, 105358. [Google Scholar] [CrossRef]
Data Type | Study Goal | Method | Weakness | |
---|---|---|---|---|
Salvini et al. [16] | 3D models and point clouds derived from RPAS and Terrestrial Laser Scanner (TLS) | Measuring surface roughness | Roughness measurements were compared manually with the traditional method | Manual calculation for surface roughness measurements |
Kong et al. [17] | 3D point clouds derived from RPAS data | Discontinuity detection with scan-line and dip/dip direction calculations | Normal vector calculation and cluster analysis for points | Difficulties in detecting discontinuities such as linear traces and cracks |
Wang et al. [18] | 3D models and point clouds derived from RPAS data | Identification of discontinuities and calculation of rockfall potential | Point cluster analysis and image processing | Time consumption depending on octree levels |
Song et al. [19] | 3D models and point clouds derived from RPAS data | Measuring surface roughness and 3D laser scanner comparison with RPAS | Cloud-to-cloud comparison with M3C2 algorithm | Ambient lighting and equipment sensitivity |
Ozturk et al. [22] | 3D models and point clouds derived from mobile phone data | Detection of discontinuity and kinematic analysis | Plane fitting and normal vector calculation method | Discontinuities are detected manually |
Chen and Jiang [23] | 3D models and point clouds derived from mobile phone data | Discontinuity detection with dip/dip direction calculation | Coordinate transformation and normal vector calculation | Discontinuities are detected manually |
An et al. [24] | 3D models and point clouds derived from mobile phone data | Measuring surface roughness | Image reconstruction and mesh model generation | Ambient lighting and requires large working area |
Specification | Value |
---|---|
Weight | 1391 g |
Crosswise distance | 350 mm |
Ascent/Descent speed | 6/3 (m/s) |
RTK module | Enabled |
GNSS module | GPS, GLONASS, Galileo, BeiDou |
Fixed time | <50 s |
Sensor size/type | 1”/CMOS |
Effective image pixel resolution | 20 MP |
Image Frame Size (pixel) | 5472 × 3648 |
Focal length | 8.8–24 mm |
Image bands included in the camera | Red, Green, Blue (RGB) |
Augmentation Configuration | Train | Test |
---|---|---|
Dataset-1 (3D + Rad/Geo augmentation) | 8458 | 711 |
Dataset-2 (Mono + Rad/Geo augmentation) | 292 | 33 |
Dataset-3 (Multi-view augmentation) | 4229 | 711 |
Dataset-4 (Mono only) | 146 | 33 |
Model Parameters | |
---|---|
Model | U-Net |
Backbone | ResNet-18 |
Epochs | 100 |
Batch Size | 8 |
Optimizer | Adam |
Activation Layer | ReLU and Sigmoid |
Loss Function | Binary Cross Entropy and Dice Loss |
Model Parameters | Crack Dataset for Random Initialization | Dataset-3 for Domain Adaptation |
---|---|---|
Model | U-Net and LinkNet | U-Net and LinkNet |
Backbones | SE-ResNet-18, SE-ResNext-50, VGG16 | SE-ResNet-18, SE-ResNext-50, VGG16 |
Epochs | 100 | 30 |
Batch Size | 8 | 8 |
Optimizer | Adam | Adam |
Activation Layer | ReLU and Sigmoid | ReLU and Sigmoid |
Loss Function | Binary Cross Entropy and Dice Loss | Binary Cross Entropy and Dice Loss |
Check Points | RMSEx (mm) | RMSEy (mm) | RMSEz (mm) | RMSExyz (mm) | Image Pixel |
---|---|---|---|---|---|
2 | 2.42 | 0.40 | 3.40 | 4.19 | 0.32 |
3 | −6.31 | −2.29 | −2.52 | 7.18 | 0.32 |
7 | 12.72 | 4.41 | −7.25 | 15.29 | 0.21 |
9 | 6.69 | −0.77 | 2.18 | 7.08 | 0.28 |
13 | 7.42 | −1.23 | −6.89 | 10.20 | 0.17 |
15 | −0.44 | −4.28 | −2.26 | 4.86 | 0.28 |
Total RMSE | 7.16 | 2.75 | 4.62 | 8.95 | 0.26 |
Dataset-1 | Dataset-2 | Dataset-3 | Dataset-4 | |
---|---|---|---|---|
F1-Score | 0.914 | 0.910 | 0.917 | 0.916 |
Jaccard Index | 0.842 | 0.834 | 0.847 | 0.845 |
U-Net SEResNet18 | U-Net SEResNeXt50 | U-Net VGG16 | LinkNet SEResNet18 | LinkNet SEResNeXt50 | LinkNet VGG16 | |
---|---|---|---|---|---|---|
F1-Score | 0.891 | 0.906 | 0.897 | 0.888 | 0.898 | 0.894 |
Jaccard Index | 0.803 | 0.829 | 0.813 | 0.799 | 0.815 | 0.808 |
Line Segments | Processing Results (cm) | Control Measurements (cm) | Differences (cm) |
---|---|---|---|
1 | 15.36 | 15.15 | 0.21 |
2 | 33.87 | 33.30 | 0.57 |
3 | 48.70 | 48.49 | 0.21 |
4 | 21.46 | 22.25 | −0.79 |
5 | 35.42 | 35.95 | −0.53 |
6 | 53.55 | 52.81 | 0.74 |
7 | 34.93 | 33.45 | 1.48 |
8 | 11.17 | 10.87 | 0.30 |
9 | 50.84 | 49.56 | 1.28 |
10 | 16.68 | 17.63 | −0.95 |
RMSE | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalcin, I.; Can, R.; Gokceoglu, C.; Kocaman, S. A Novel Rock Mass Discontinuity Detection Approach with CNNs and Multi-View Image Augmentation. ISPRS Int. J. Geo-Inf. 2024, 13, 185. https://doi.org/10.3390/ijgi13060185
Yalcin I, Can R, Gokceoglu C, Kocaman S. A Novel Rock Mass Discontinuity Detection Approach with CNNs and Multi-View Image Augmentation. ISPRS International Journal of Geo-Information. 2024; 13(6):185. https://doi.org/10.3390/ijgi13060185
Chicago/Turabian StyleYalcin, Ilyas, Recep Can, Candan Gokceoglu, and Sultan Kocaman. 2024. "A Novel Rock Mass Discontinuity Detection Approach with CNNs and Multi-View Image Augmentation" ISPRS International Journal of Geo-Information 13, no. 6: 185. https://doi.org/10.3390/ijgi13060185