Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Acquisition
Flight Year | Flight Data | Sensor | Image Resolution | Number of Images | Flight Area (km2) |
---|---|---|---|---|---|
2008 | 15 May–28 May | ADS40 | 0.5–0.7 m/2 m | 99 | 36,744 |
2009 | 16 May–03 June | ADS80 | 0.5 m/5 m | 108 | 33,266 |
2010 | 18 April–04 May | UCXp | 0.3 m/4 m | 78 | Approximately 10,000 |
2011 | 17 May–07 June | UCXp | 0.3 m/4 m | 57 | 20,125 |
3.2. Method
3.2.1. Region Selection
No. | Location | Image Date | Number of Landslides | Total Area in 2008 (ha) | ||
---|---|---|---|---|---|---|
2008 | 2009 | 2011 | ||||
1 | Wenjiagou, Qingping Town, Mianzhu City | 23 May | 03 June | 07 June | 1 | 260.33 |
2 | Chenjiaba, Beichuan County | 28 May | 18 May | 31 May | 23 | 631.63 |
3 | East Yingxiu Town, Wenchuan County | 23 May | 16 May | 07 June | 8 | 121.68 |
4 | Hanwang Town, Mianzhu City | 19 May | 16 May | 25 May | 11 | 113.30 |
5 | Tianchi Town, Mianzhu City | 23 May | 16 May | 25 May | 12 | 148.18 |
6 | Shawan, Nanba Town, Pingwu County | 28 May | 18 May | 31 May | 3 | 48.49 |
7 | Yingxiu Town, Wenchuan County | 23 May | 03 June | 28 May | 14 | 664.73 |
8 | Jinhelinkuang, Mianzhu City | 23 May | 03 June | 07 June | 12 | 616.85 |
9 | Jiuding Mountain, Bailongchi, Mianzhu City | 23 May | 16 May | 25 May | 2 | 110.33 |
10 | Tangjiashan, Beichuan County | 27 May | 18 May | 31 May | 27 | 487.14 |
11 | Guanzhipu, Beichuan County | 28 May | 18 May | 31 May | 13 | 155.32 |
12 | Jinchi Town, Wenchuan County | 24 May | 21 May | 28 May | 5 | 191.11 |
13 | Gaochuan County, Jinyang City | 23 May | 16 May | 25 May | 6 | 373.82 |
14 * | Changheba, Mianzhu City | 23 May | miss | 25 May | 2 | 141.90 |
15 * | Daguangbao Group, An County | miss | 16 May | 25 May | 4 | 959.59 |
3.2.2. Geometric Registration
3.2.3. Detection of Geologic Hazards
3.3. Field Investigation
4. Results
4.1. Multi-Temporal Detecting Geological Hazards
No. | Geologic Hazard Area (ha) | Geologic Hazard Variation Area (ha) | Geologic Hazard Variation Rate (per year) | ||||||
---|---|---|---|---|---|---|---|---|---|
2008 | 2009 | 2011 | 2008–2009 | 2009–2011 | 2008–2011 | 2008–2009 | 2009–2011 | 2008–2011 | |
1 | 260.33 | 232.70 | 235.03 | −27.63 | 2.34 | −25.29 | 0.11 | −0.01 | 0.03 |
2 | 631.63 | 626.37 | 323.61 | −5.26 | −302.76 | −308.02 | 0.01 | 0.24 | 0.16 |
3 | 121.68 | 122.09 | 107.11 | 0.41 | −14.98 | −14.57 | −0.003 | 0.06 | 0.04 |
4 | 113.30 | 86.60 | 53.21 | −26.70 | −33.39 | −60.09 | 0.24 | 0.19 | 0.18 |
5 | 148.18 | 129.20 | 88.81 | −18.98 | −40.39 | −59.37 | 0.13 | 0.16 | 0.13 |
6 | 48.49 | 45.58 | 39.74 | −2.91 | −5.84 | −8.75 | 0.06 | 0.06 | 0.06 |
7 | 664.73 | 454.83 | 265.57 | −209.89 | −189.26 | −399.16 | 0.32 | 0.21 | 0.20 |
8 | 616.85 | 602.69 | 463.49 | −14.16 | −139.20 | −153.36 | 0.02 | 0.12 | 0.08 |
9 | 110.33 | 102.74 | 105.83 | −7.59 | 3.09 | −4.51 | 0.07 | −0.02 | 0.01 |
10 | 487.14 | 516.83 | 351.75 | 29.70 | −165.08 | −135.39 | −0.06 | 0.16 | 0.09 |
11 | 155.32 | 163.12 | 109.39 | 7.80 | −53.73 | −45.93 | −0.05 | 0.16 | 0.10 |
12 | 191.11 | 154.99 | 111.55 | −36.12 | −43.44 | −79.56 | 0.19 | 0.14 | 0.14 |
13 | 373.82 | 230.04 | 224.42 | −143.77 | −5.63 | −149.40 | 0.38 | 0.01 | 0.13 |
14 | 141.90 | 153.84 (2010) | 164.60 | 11.94 | 10.76 | 22.70 | −0.04 | −0.07 | −0.05 |
15 | 959.59 (2009) | 972.15 (2010) | 951.05 | 12.56 | −8.53 | 12.56 | −0.01 | 0.01 | −0.01 |
Total | 3922.91 | 3467.78 | 2479.51 | −455.10 | −988.27 | −1443.40 | 0.116 | 0.142 | 0.123 |
4.2. Multi-Temporal Detecting Debris Flows
No. | Newly Developed Debris Flow Area (ha) | Debris Flow Development Rate (per year) | ||||
---|---|---|---|---|---|---|
2008–2009 | 2009–2011 | 2008–2011 | 2008–2009 | 2009–2011 | 2008–2011 | |
1 | 23.46 | 49.22 | 58.45 | 0.09 | 0.11 | 0.07 |
2 | 147.89 | 78.78 | 104.52 | 0.23 | 0.06 | 0.06 |
3 | 15.64 | 29.19 | 30.42 | 0.13 | 0.12 | 0.08 |
4 | 15.69 | 0.00 | 7.00 | 0.14 | 0.00 | 0.02 |
5 | 24.01 | 7.98 | 14.29 | 0.16 | 0.03 | 0.03 |
6 | 9.07 | 2.98 | 4.75 | 0.19 | 0.03 | 0.03 |
7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
8 | 35.39 | 0.00 | 17.63 | 0.06 | 0.00 | 0.01 |
9 | 3.11 | 7.79 | 7.21 | 0.03 | 0.04 | 0.02 |
10 | 84.75 | 45.93 | 63.13 | 0.17 | 0.04 | 0.04 |
11 | 31.73 | 0.00 | 19.58 | 0.20 | 0.00 | 0.04 |
12 | 0.00 | 7.26 | 0.00 | 0.00 | 0.02 | 0.00 |
13 | 11.31 | 6.94 | 15.14 | 0.03 | 0.02 | 0.01 |
14 | 20.24 (2008–2010) | 13.88 (2010–2011) | 25.37 (2008–2011) | 0.07 (2008–2010) | 0.09 (2010–2011) | 0.06 (2008–2011) |
15 | 19.72 (2009–2010) | 12.43 (2010–2011) | 29.88 (2009–2011) | 0.02 (2009–2010) | 0.01 (2010–2011) | 0.02 (2009–2011) |
Total | 402.05 | 236.07 | 342.12 | 0.102 | 0.034 | 0.029 |
4.3. Multi-Temporal Detection of Vegetation Recovery on Previously Bare Landslide Masses
4.4. Relationships between Vegetation Recovery and Debris Flow Development
No. | Area of Vegetation Recovery (ha) | Rate of Vegetation Recovery (per year) | ||||
---|---|---|---|---|---|---|
2008–2009 | 2009–2011 | 2008–2011 | 2008–2009 | 2009–2011 | 2008–2011 | |
1 | 51.09 | 46.89 | 83.74 | 0.20 | 0.10 | 0.11 |
2 | 153.14 | 381.54 | 412.53 | 0.24 | 0.30 | 0.22 |
3 | 15.23 | 44.17 | 44.99 | 0.13 | 0.18 | 0.12 |
4 | 42.39 | 33.39 | 67.09 | 0.37 | 0.19 | 0.20 |
5 | 43.00 | 48.37 | 73.67 | 0.29 | 0.19 | 0.17 |
6 | 11.98 | 8.81 | 13.50 | 0.25 | 0.10 | 0.09 |
7 | 209.89 | 189.26 | 399.16 | 0.32 | 0.21 | 0.20 |
8 | 49.55 | 139.20 | 170.99 | 0.08 | 0.12 | 0.09 |
9 | 10.71 | 4.70 | 11.71 | 0.10 | 0.02 | 0.04 |
10 | 55.05 | 211.02 | 198.52 | 0.11 | 0.20 | 0.14 |
11 | 23.94 | 53.73 | 65.51 | 0.15 | 0.16 | 0.14 |
12 | 36.12 | 50.71 | 79.56 | 0.19 | 0.16 | 0.14 |
13 | 155.09 | 12.57 | 164.54 | 0.41 | 0.03 | 0.15 |
14 | 8.30 (2008–2010) | 3.13 (2010–2011) | 2.67 (2008–2011) | 0.03 (2008–2010) | 0.02 (2010–2011) | 0.01 (2008–2011) |
15 | 7.16 (2009–2010) | 33.53 (2010–2011) | 38.41 (2009–2011) | 0.01 (2009–2010) | 0.03 (2010–2011) | 0.02 (2009–2011) |
Total | 857.18 | 1224.36 | 1785.51 | 0.22 | 0.18 | 0.15 |
5. Discussion
5.1. Geologic Hazards Development in the Earthquake Triggered Hazard Areas
5.2. Debris Flow Development in the Earthquake Triggered Hazard Areas
No. | Longitude | Latitude | Lithology |
---|---|---|---|
1 | 104.122 | 31.5519 | glutenite, limestone |
2 | 104.56 | 31.9247 | glutenite, limestone |
3 | 103.64 | 31.2122 | granite, diorite |
4 | 103.999 | 31.4576 | limestone splint rock |
5 | 104.146 | 31.4839 | quartzose sandstone |
6 | 104.811 | 32.1836 | glutenite, limestone |
7 | 103.464 | 31.0672 | granite, diorite |
8 | 104.124 | 31.5096 | quartzose sandstone |
9 | 103.945 | 31.5051 | granite, diorite |
10 | 104.441 | 31.8251 | glutenite, limestone |
11 | 104.669 | 32.052 | glutenite, limestone |
12 | 103.509 | 31.3697 | granite, diorite |
13 | 104.031 | 31.6379 | limestone splint rock |
14 | 103.959 | 31.5263 | granite, diorite |
15 | 104.115 | 31.6402 | limestone splint rock |
5.3. Vegetation Recovery in the Earthquake Triggered Hazard Areas
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cui, P.; Zhu, Y.-Y.; Han, Y.-S.; Chen, X.-Q.; Zhuang, J.-Q. The 12 May Wenchuan earthquake-induced landslide lakes: Distribution and preliminary risk evaluation. Landslides 2009, 6, 209–223. [Google Scholar] [CrossRef]
- Han, J.; Wu, S.; He, S.; Sun, W.; Zhang, C.; Wang, T.; Yang, J.; Si, J. Basal characteristics and formation mechanisms of geological hazards triggered by the May 12, 2008 Wenchuan earthquake with a moment magnitude of 8.0. Earth Sci. Fontiers 2009, 16, 306–326. (In Chinese) [Google Scholar]
- Lu, T.; Zeng, H.; Luo, Y.; Wang, Q.; Shi, F.; Sun, G.; Wu, Y.; Wu, N. Monitoring vegetation recovery after China’s May 2008 Wenchuan earthquake using landsat tm time-series data: A case study in Mao County. Ecol. Res. 2012, 27, 955–966. [Google Scholar] [CrossRef]
- Cui, P.; Wei, F.; Chen, X.; He, S. Geo-hazards in Wenchuan earthquake area and countermeasures for disaster reduction. Bull. Chin. Acad. Sci. 2008, 23, 317–323. [Google Scholar]
- Li, Z. The state of the art of the research on seismic landslide hazard at home and abroad. J. Catastrophol. 2003, 18, 64–70. [Google Scholar]
- Tronin, A. Satellite remote sensing in seismology. A review. Remote Sens. 2009, 2, 124–150. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Q.; Dou, A.; Wang, X. Extracting damages caused by the 2008 Ms 8.0 Wenchuan earthquake from SAR remote sensing data. J. Asian Earth Sci. 2011, 40, 907–914. [Google Scholar] [CrossRef]
- Ehrlich, D.; Guo, H.D.; Molch, K.; Ma, J.W.; Pesaresi, M. Identifying damage caused by the 2008 Wenchuan earthquake from VHR remote sensing data. Int. J. Digit. Earth 2009, 2, 309–326. [Google Scholar] [CrossRef]
- Ellen, R.; Robert, K.; Kyu-Seok, W. Remote sensing observations of landslides and ground deformation from the 2004 Niigata Ken Chuetsu earthquake. Jpn. Geotech. Soc. 2006, 46, 831–842. [Google Scholar]
- Fu, B.; Ninomiya, Y.; Lei, X.; Toda, S.; Awata, Y. Mapping active fault associated with the 2003 Mw 6.6 Bam (Se Iran) earthquake with ASTER 3D images. Remote Sens. Environ. 2004, 92, 153–157. [Google Scholar] [CrossRef]
- Guo, H.; Liu, L.; Fan, X.; Li, X. Study of earth observation for disaster reduction in Wenchuan and Yushu earthquakes. Geol. J. China Univ. 2011, 17, 1–12. (In Chinese) [Google Scholar]
- Yusuf, Y.; Matsuoka, M.; Yamazaki, F. Damage assessment after 2001 Gujarat earthquake using Landsat-7 satellite images. J. Indian Soc. Remote Sens. 2001, 29, 17–22. [Google Scholar] [CrossRef]
- Safari, H.O.; Pirasteh, S.; Pradhan, B.; Gharibvand, L.K. Use of remote sensing data and GIS tools for seismic hazard assessment for shallow oilfields and its impact on the settlements at Masjed-i-Soleiman area, Zagros mountains, Iran. Remote Sens. 2010, 2, 1364–1377. [Google Scholar] [CrossRef]
- Liou, Y.A.; Sha, H.C.; Chen, T.M.; Wang, T.S.; Li, Y.T.; Lai, Y.C.; Chiang, M.H.; Lu, L.T. Assessment of disaster losses in rice paddy field and yield after Tsunami induced by the 2011 great east Japan earthquake. J. Mar. Sci. Technol.-Taiwan 2012, 20, 618–623. [Google Scholar]
- Kulawardhana, R.W. Remote sensing and GIS technologies for monitoring and prediction of disasters. Int. J. Digit. Earth 2011, 5, 88–90. [Google Scholar] [CrossRef]
- Gorum, T.; Fan, X.; van Westen, C.J.; Huang, R.Q.; Xu, Q.; Tang, C.; Wang, G. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 2011, 133, 152–167. [Google Scholar] [CrossRef]
- Zhang, B.; Jiao, Q.; Wu, Y.; Zhang, W. Estimating soil erosion changes in the Wenchuan earthquake disaster area using geo-spatial information technology. J. Appl. Remote Sens. 2009, 3. [Google Scholar] [CrossRef]
- Klose, C.D. Evidence for anthropogenic surface loading as trigger mechanism of the 2008 Wenchuan earthquake. Environ. Earth Sci. 2011, 66, 1439–1447. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Q.; Zhou, J.; Tian, B. Analysis of synthetic aperture radar image characteristics for seismic disasters in the Wenchuan earthquake. J. Appl. Remote Sens. 2009, 3. [Google Scholar] [CrossRef]
- Tong, X.; Sandwell, D.T.; Fialko, Y. Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS, and field data. J. Geophys. Res.: Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- Lei, L.; Liu, L.; Zhang, L.; Bi, J.; Wu, Y.; Jiao, Q.; Zhang, W. Assessment and analysis of collapsing houses by aerial images in the Wenchuan earthquake. J. Remote Sens 2010, 14, 333–344. [Google Scholar]
- Liu, L.; Wu, Y.; Zuo, Z.; Chen, Z.; Wang, X.; Zhang, W. Monitoring and assessment of barrier lakes formed after the Wenchuan earthquake based on multitemporal remote sensing data. J. Appl. Remote Sens. 2009, 3. [Google Scholar] [CrossRef]
- Sato, H.; Harp, E. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the beichuan area, sichuan province, China using satellite imagery and google earth. Landslides 2009, 6, 153–159. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, J.; Peng, J.; Lu, Q. Estimating Wenchuan earthquake induced landslides based on remote sensing. Int. J. Remote Sens. 2010, 31, 3495–3508. [Google Scholar]
- Wang, X.; Dou, A.; Ding, X. Study on Quantitative Earthquake Damage of Dujiangyan City, Caused by 2008 MS = 8.0 Wenchuan, China Earthquake Based on Aerial Imagery. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 2743–2746.
- Brown, D.; Saito, K.; Liu, M.; Spence, R.; So, E.; Ramage, M. The use of remotely sensed data and ground survey tools to assess damage and monitor early recovery following the 12.5.2008 Wenchuan earthquake in China. Bull. Earthq. Eng. 2011, 10, 741–764. [Google Scholar]
- Cao, C.; Chang, C.; Xu, M.; Zhao, J.; Gao, M.; Zhang, H.; Guo, J.; Guo, J.; Dong, L.; He, Q.; et al. Epidemic risk analysis after the Wenchuan earthquake using remote sensing. Int. J. Remote Sens. 2010, 31, 3631–3642. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Kar, S.K.; Chang, L. Use of high-resolution formosat-2 satellite images for post-earthquake disaster assessment: A study following the 12 May 2008 Wenchuan earthquake. Int. J. Remote Sens. 2010, 31, 3355–3368. [Google Scholar] [CrossRef]
- Dong, J.-J.; Liou, Y.-A.; Chang, L.-Y.; Lee, C.-T.; Liao, J.-J.; Pa, Y.-W. Application of satellite images and DEM for the hazard assessment of landslide dams. J. Photogramm. Remote Sens. 2010, 15, 3–15. [Google Scholar]
- Cui, P.; Zhuang, J.; Chen, X.; Zhang, J.; Zhou, X. Characteristics and countermeasures of debris flow in Wenchuan area after the earthquake. J. Sichuan Univ. (Eng. Sci. Ed.) 2010, 42, 10–19. (In Chinese) [Google Scholar]
- Li, Y.; Huang, R.; Densmore, A.L.; Zhou, C.; Cao, S. Basic features and research progresses of Wenchuan MS 8.0 earthquake. J. Sichuan Univ. (Eng. Sci. Ed.) 2009, 41, 7–25. (In Chinese) [Google Scholar]
- Yang, C.; Ren, X.; Huang, H. The vegetation damage assessment of the Wenchuan earthquake of May 2008 using remote sensing and GIS. Nat. Hazards 2011, 62, 45–55. [Google Scholar] [CrossRef]
- Chigira, M.; Wu, X.; Inokuchi, T.; Wang, G. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 2010, 118, 225–238. [Google Scholar] [CrossRef]
- Huang, R.; Li, W. Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan earthquake, China. Bull. Eng. Geol. Environ. 2009, 68, 363–371. [Google Scholar] [CrossRef]
- Ge, Y.; Xu, J.; Liu, Q.; Yao, Y.; Wang, R. Image interpretation and statistical analysis of vegetation damage caused by the Wenchuan earthquake and related secondary disasters. J. Appl. Remote Sens. 2009, 3. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Ge, Q. Evaluating the vegetation destruction and recovery of Wenchuan earthquake using MODIS data. Nat. Hazards 2010, 54, 851–862. [Google Scholar] [CrossRef]
- Xu, J.; Lu, Y. Meta-synthesis pattern of post-disaster recovery and reconstruction: Based on actual investigation on 2008 Wenchuan earthquake. Nat. Hazards 2011, 60, 199–222. [Google Scholar]
- Guo, H.; Liu, L.; Lei, L.; Wu, Y.; Li, L.; Zhang, B.; Zuo, Z.; Li, Z. Dynamic analysis of the Wenchuan earthquake disaster and reconstruction with 3-year remote sensing data. Int. J. Digit. Earth 2010, 3, 355–364. [Google Scholar] [CrossRef]
- Cruden, D.M. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Turner, A.K.; Schuster, R.L. Landslides: Investigation and Mitigation; Transportation Research Board, Special Report 247; National Academy Press: Washington, DC, USA, 1996; pp. 129–177. [Google Scholar]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook: A Guide to Understanding Landslides; U.S. Geological Survey Circular 1325: Reston, VA, USA, 2008; p. 129. [Google Scholar]
- Highland, L.; Ellen, S.D.; Christian, S.B.; Brown, W.M., III. Debris-Flow Hazards in the United States; U.S. Department of the Interior, U.S. Geological Survey: Denver, CO, USA, 1997. [Google Scholar]
- Ren, Z.; Lin, A. Co-seismic landslides induced by the 2008 Wenchuan magnitude 8.0 earthquake, as revealed by ALOS PRISM and AVNIR2 imagery data. Int. J. Remote Sens. 2010, 31, 3479–3493. [Google Scholar]
- Chen, X.; Cui, P.; Li, Y.; Gao, Q.; Zhao, W. Mountain hazard induced by Wenchuan earthquake and its long-term development trends of Ganxi Gully, Beichuan. J. Sichuan Univ. (Eng. Sci. Ed.) 2010, 42, 22–32. (In Chinese) [Google Scholar]
- Qi, X.; Tang, C.; Chen, Z.; Shao, C. Coupling analysis of control factors between earthquake-induced landslides and subsequent rainfall-induced landslides in epicenter area of Wenchuan earthquake. J. Eng. Geol. 2012, 20, 522–531. [Google Scholar]
- Yi, G.; Long, F.; Zhang, Z. Spatial and temporal variation of focal mechanisms for aftershocks of the 2008 Ms8.0 Wenchuan earthquake. Chin. J. Geophys. 2012, 55, 1213–1227. (In Chinese) [Google Scholar]
- Li, Y.; Chen, L.; Lu, Y.; Zhan, Z. Numerical simulation on influences of Wenchuan earthquake on the stability of faults in the neighborhood. Earth Sci. (J. China Univ. Geosci.) 2013, 38, 398–410. (In Chinese) [Google Scholar]
- Hua, W.; Chen, Z.; Li, Z.; Zhao, C.; Wang, Q.-C. Seismic triggering and the aftershock distribution of the Wenchuan M8.0 earthquake. Earthquake 2009, 29, 33–39. [Google Scholar]
- Masoud, A.; Koike, K. Relationship between remotely sensed vegetation change and fracture zones induced by the 2008 Wenchuan earthquake, China. J. Earth Sci. 2013, 24, 282–296. [Google Scholar] [CrossRef]
- Chen, N.-S.; Hu, G.-S.; Deng, M.-F.; Zhou, W.; Yang, C.-L.; Han, D.; Deng, J.-H. Impact of earthquake on debris flows—A case study on the Wenchuan earthquake. J. Earthq. Tsunami 2011, 5, 493–508. [Google Scholar] [CrossRef]
- Zhang, J.; Hull, V.; Xu, W.; Liu, J.; Ouyang, Z.; Huang, J.; Wang, X.; Li, R. Impact of the 2008 Wenchuan earthquake on biodiversity and giant panda habitat in Wolong Nature Reserve, China. Ecol. Res. 2011, 26, 523–531. [Google Scholar] [CrossRef]
- Bormann, F.H.; Likens, G.E. Pattern and Process in a Forested Ecosystem: Disturbance, Development, and the Steady State Based on the Hubbard Brook Ecosystem Study; Springer-Verlag: New York, USA, 1994; p. 207. [Google Scholar]
- Ferguson, B.G.; Vandermeer, J.; Morales, H.; Griffith, D.M. Post-agricultural succession in el petén, guatemala. Conserv. Biol. 2003, 17, 818–828. [Google Scholar] [CrossRef]
- Holl, K.D.; Loik, M.E.; Lin, E.H.V.; Samuels, I.A. Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restor. Ecol. 2000, 8, 339–349. [Google Scholar] [CrossRef]
- Lin, W.-T.; Chou, W.-C.; Lin, C.-Y.; Huang, P.-H.; Tsai, J.-S. Vegetation recovery monitoring and assessment at landslides caused by earthquake in central Taiwan. For. Ecol. Manag. 2005, 210, 55–66. [Google Scholar] [CrossRef]
- Mhaske, S.Y.; Choudhury, D. GIS-based soil liquefaction susceptibility map of Mumbai city for earthquake events. J. Appl. Geophys. 2010, 70, 216–225. [Google Scholar] [CrossRef]
- Brocca, L.; Ponziani, F.; Moramarco, T.; Melone, F.; Berni, N.; Wagner, W. Improving landslide forecasting using ASCAT-derived soil moisture data: A case study of the Torgiovannetto landslide in central Italy. Remote Sens. 2012, 4, 1232–1244. [Google Scholar] [CrossRef]
- Kamp, U.; Growley, B.J.; Khattak, G.A.; Owen, L.A. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 2008, 101, 631–642. [Google Scholar] [CrossRef]
- Lee, S.; Talib, J. Probabilistic landslide susceptibility and factor effect analysis. Environ. Geol. 2005, 47, 982–990. [Google Scholar] [CrossRef]
- Wang, L.; Shum, C.K.; Simons, F.J.; Tassara, A.; Erkan, K.; Jekeli, C.; Braun, A.; Kuo, C.; Lee, H.; Yuan, D.-N. Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations. Earth Planet. Sci. Lett. 2012, 335–336, 167–179. [Google Scholar] [CrossRef]
- Li, A.; Wang, A.; Liang, S.; Zhou, W. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS—A case study in the upper reaches of Minjiang river, China. Ecol. Model. 2006, 192, 175–187. [Google Scholar] [CrossRef]
- Lu, T.; Shi, F.; Sun, G.; Luo, Y.; Wang, Q.; Wu, Y.; Wu, N. Reconstruction of the Wenchuan earthquake-damaged ecosystems: Four important questions. Chin. J. Appl. Environ. Biol. 2010, 16, 301–304. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, Z.; Jiao, Q.; Liu, L.; Tang, H.; Liu, T. Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography. ISPRS Int. J. Geo-Inf. 2014, 3, 368-390. https://doi.org/10.3390/ijgi3010368
Li Z, Jiao Q, Liu L, Tang H, Liu T. Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography. ISPRS International Journal of Geo-Information. 2014; 3(1):368-390. https://doi.org/10.3390/ijgi3010368
Chicago/Turabian StyleLi, Zhenwang, Quanjun Jiao, Liangyun Liu, Huan Tang, and Tong Liu. 2014. "Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography" ISPRS International Journal of Geo-Information 3, no. 1: 368-390. https://doi.org/10.3390/ijgi3010368
APA StyleLi, Z., Jiao, Q., Liu, L., Tang, H., & Liu, T. (2014). Monitoring Geologic Hazards and Vegetation Recovery in the Wenchuan Earthquake Region Using Aerial Photography. ISPRS International Journal of Geo-Information, 3(1), 368-390. https://doi.org/10.3390/ijgi3010368