Monitoring and Assessing Post-Disaster Tourism Recovery Using Geotagged Social Media Data
Abstract
:1. Introduction
2. Related Work
2.1. Geotagged Social Media Data for Disaster Management
2.2. Traditional Approaches for Monitoring and Assessing Post-Disaster Recovery
3. Monitoring and Assessing Post-Disaster Tourism Recovery Using Geotagged Flickr Photos
3.1. Quality Enhancement
3.2. Quantitative Tourist Photo Analysis
3.3. Qualitative Photo Analysis
4. Case Study
4.1. Study Area
4.2. Data Collection and Pre-Processing
4.3. Photo Analysis
4.4. Results and Interpretations
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Glennon, J.A. Crowdsourcing geographic information for disaster response: A research frontier. Int. J. Digit. Earth 2010, 3, 231–241. [Google Scholar] [CrossRef]
- Horita, F.E.A.; Degrossi, L.C.; de Assis, L.F.G.; Zipf, A.; de Albuquerque, J.P. The use of volunteered geographic information (VGI) and crowdsourcing in disaster management: A systematic literature review. In Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, IL, USA, 15–17 August 2013. [Google Scholar]
- Haworth, B.; Bruce, E. A review of volunteered geographic information for disaster management. Geogr. Compass 2015, 9, 237–250. [Google Scholar] [CrossRef]
- Mair, J.; Ritchie, B.W.; Walters, G. Towards a research agenda for post-disaster and post-crisis recovery strategies for tourist destinations: A narrative review. Curr. Issues Tour. 2016, 19, 1–26. [Google Scholar] [CrossRef]
- Walters, G.; Mair, J. The effectiveness of post-disaster recovery marketing messages—The case of the 2009 Australian bushfires. J. Travel Tour. Mark. 2012, 29, 87–103. [Google Scholar] [CrossRef]
- Ryu, K.; Bordelon, B.M.; Pearlman, D.M. Destination-image recovery process and visit intentions: Lessons learned from Hurricane Katrina. J. Hosp. Mark. Manag. 2013, 22, 183–203. [Google Scholar] [CrossRef]
- Santana, G. Crisis management and tourism. J. Travel Tour. Mark. 2004, 15, 299–321. [Google Scholar] [CrossRef]
- Pearlman, D.; Melnik, O. Hurricane Katrina's effect on the perception of New Orleans leisure tourists. J. Travel Tour. Mark. 2008, 25, 58–67. [Google Scholar] [CrossRef]
- Liu, M.; Scheepbouwer, E.; Giovinazzi, S. Critical success factors for post-disaster infrastructure recovery: Learning from the Canterbury (NZ) earthquake recovery. Disaster Prev. Manag. Int. J. 2016, 25, 685–700. [Google Scholar] [CrossRef]
- Platt, S.; Brown, D.; Hughes, M. Measuring resilience and recovery. Int. J. Disaster Risk Reduct. 2016, 19, 447–460. [Google Scholar] [CrossRef]
- Rittichainuwat, B. Ghosts: A travel barrier to tourism recovery. Ann. Tour. Res. 2011, 38, 437–459. [Google Scholar] [CrossRef]
- Senaratne, H.; Bröring, A.; Schreck, T. Using reverse viewshed analysis to assess the location correctness of visually generated VGI. Trans. GIS 2013, 17, 369–386. [Google Scholar] [CrossRef]
- Gerlitz, C.; Rieder, B. Mining one percent of Twitter: Collections, baselines, sampling. M/C J. 2013, 16, 620. [Google Scholar]
- Frank, M.; Dong, B.; Felt, A.P.; Song, D. Mining permission request patterns from Android and Facebook applications. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012. [Google Scholar]
- Zheng, Y.-T.; Zha, Z.-J.; Chua, T.-S. Mining travel patterns from geotagged photos. ACM Trans. Intell. Syst. Technol. 2012, 3, 56. [Google Scholar] [CrossRef]
- Huang, W.; Li, S. Understanding human activity patterns based on space-time-semantics. ISPRS J. Photogramm. Remote Sens. 2016, 121, 1–10. [Google Scholar] [CrossRef]
- Li, L.; Goodchild, M.F.; Xu, B. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartogr. Geogr. Inf. Sci. 2013, 40, 61–77. [Google Scholar] [CrossRef]
- Li, J.; Qin, Q.; Han, J.; Tang, L.-A.; Lei, K.H. Mining trajectory data and geotagged data in social media for road map inference. Trans. GIS 2015, 19, 1–18. [Google Scholar] [CrossRef]
- De Albuquerque, J.P.; Herfort, B.; Brenning, A.; Zipf, A. A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. Int. J. Geogr. Inf. Sci. 2015, 29, 667–689. [Google Scholar] [CrossRef]
- Zook, M.; Graham, M.; Shelton, T.; Gorman, S. Volunteered geographic information and crowdsourcing disaster relief: A case study of the Haitian earthquake. World Med. Health Policy 2010, 2, 7–33. [Google Scholar] [CrossRef]
- Peary, B.D.M.; Shaw, R.; Takeuchi, Y. Utilization of social media in the east Japan earthquake and tsunami and its effectiveness. J. Nat. Disaster Sci. 2012, 34, 3–18. [Google Scholar] [CrossRef]
- Takahashi, B.; Tandoc, E.C., Jr.; Carmichael, C. Communicating on Twitter during a disaster: An analysis of tweets during Typhoon Haiyan in the Philippines. Comput. Hum. Behav. 2015, 50, 392–398. [Google Scholar] [CrossRef]
- Pennington, C.; Freeborough, K.; Dashwood, C.; Dijkstra, T.; Lawrie, K. The National Landslide Database of Great Britain: Acquisition, communication and the role of social media. Geomorphology 2015, 249, 44–51. [Google Scholar] [CrossRef]
- Brown, D.; Saito, K.; Spence, R.; Chenvidyakarn, T.; Adams, B.; Mcmillan, A.; Platt, S. Indicators for measuring, monitoring and evaluating post-disaster recovery. In Proceedings of the 6th International Workshop on Remote Sensing for Disaster Applications, Pavia, Italy, 11–12 September 2008. [Google Scholar]
- Hoshi, T.; Murao, O.; Yoshino, K.; Yamazaki, F.; Estrada, M. Post-disaster urban recovery monitoring in Pisco after the 2007 Peru earthquake using satellite image. J. Disaster Res. 2014, 9, 1059. [Google Scholar]
- Brown, D.; Saito, K.; Liu, M.; Spence, R.; So, E.; Ramage, M. The use of remotely sensed data and ground survey tools to assess damage and monitor early recovery following the 12.5.2008 Wenchuan earthquake in China. Bull. Earthq. Eng. 2012, 10, 741–764. [Google Scholar] [CrossRef]
- Rathfon, D.; Davidson, R.; Bevington, J.; Vicini, A.; Hill, A. Quantitative assessment of post-disaster housing recovery: A case study of Punta Gorda, Florida, after Hurricane Charley. Disasters 2013, 37, 333–355. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, K.; Hanson, M. Technical Report: Post-Katrina Recovery of the Housing Market along the Mississippi Gulf Coast; Gulf States Policy Institute: New Orleans, LA, USA, 2008. [Google Scholar]
- The International Charter. Available online: https://www.disasterscharter.org/documents/10180/187832/CHARTER_UA_ENG.pdf (accessed on 16 March 2017).
- Goodchild, M.F.; Li, L. Assuring the quality of volunteered geographic information. Spat. Stat. 2012, 1, 110–120. [Google Scholar] [CrossRef]
- Haklay, M.; Basiouka, S.; Antoniou, V.; Ather, A. How many volunteers does it take to map an area well? The validity of Linus’ law to volunteered geographic information. Cartogr. J. 2010, 47, 315–322. [Google Scholar] [CrossRef]
- Create Space Time Cube. Available online: http://pro.arcgis.com/en/pro-app/tool-reference/space-time-pattern-mining/create-space-time-cube.htm (accessed on 27 December 2016).
- Wiens, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729–19736. [Google Scholar] [CrossRef] [PubMed]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Imran, M.; Castillo, C.; Lucas, J.; Meier, P.; Vieweg, S. AIDR: Artificial intelligence for disaster response. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014. [Google Scholar]
- When to Go and Weather. Available online: http://www.lonelyplanet.com/philippines/weather (accessed on 21 December 2016).
- Lagmay, A.M.F.; Eco, R. Brief communication: On the source characteristics and impacts of the magnitude 7.2 Bohol earthquake, Philippines. Nat. Hazards Earth Syst. Sci. 2014, 14, 2795–2801. [Google Scholar] [CrossRef]
- Lagmay, A.M.F.; Agaton, R.P.; Bahala, M.A.C.; Briones, J.B.L.T.; Cabacaba, K.M.C.; Caro, C.V.C.; Dasallas, L.L.; Gonzalo, L.A.L.; Ladiero, C.N.; Lapidez, J.P.; et al. Devastating storm surges of Typhoon Haiyan. Int. J. Disaster Risk Reduct. 2015, 11, 1–12. [Google Scholar] [CrossRef]
- The Bohol Quake: Then and Now (How Has Bohol’s Recovered after this Disaster?). Available online: http://8list.ph/bohol-quake-third-anniversary/ (accessed on 10 December 2016).
- A Year after Yolanda: Malapascua, Bantayan Now Ready for Tourists. Available online: http://www.philstar.com/cebu-business/2014/11/08/1389447/year-after-yolanda-malapascua-bantayan-now-ready-tourists (accessed on 10 December 2016).
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.; Curtis, B.; Haase, J.; et al. Aster Global Digital Elevation Model Version 2—Summary of Validation Results; NASA Land Processes Distributed Active Archive Center and the Joint Japan-US ASTER Science Team: Sioux Falls, SD, USA, 2011. [Google Scholar]
- USGS Earthexplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 23 December 2016).
- OpenStreetMap. org.ph Mina-Mapa ang Pilipinas. Available online: https://openstreetmap.org.ph/ (accessed on 23 December 2016).
- Humanitarian OpenStreetMap Team. Available online: https://hotosm.org/projects/typhoon_haiyan (accessed on 23 December 2016).
- Gocotano, A.; Geroy, L.S.; Alcido, M.R.; Dorotan, M.M.; Balboa, G.; Hall, J.L. Is the response over? The transition from response to recovery in the health sector post-Typhoon Haiyan. West. Pac. Surveill. Response 2015, 6, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Philippine Tourism Continues. Available online: http://tourism.gov.ph/Pages/20131118aPHILIPPINETOURISMCONTINUES.aspx (accessed on 10 March 2017).
- Bohol Earthquake Recovery Operation Comes to an End; Boholanos Grateful for Repaired Shelter, New Homes. Available online: http://reliefweb.int/report/philippines/bohol-earthquake-recovery-operation-comes-end-boholanos-grateful-repaired-shelter (accessed on 9 March 2017).
- After Typhoon Haiyan, Australians Help Philippines with Recovery. Available online: http://www.smh.com.au/world/after-typhoon-haiyan-australians-help-philippines-with-recovery-20140912–10eu1e.html (accessed on 9 March 2017).
- Look: Bohol’s Centuries-old Churches Two Years after the Quake. Available online: http://lifestyle.inquirer.net/198313/look-bohols-centuries-old-churches-two-years-after-the-quake/ (accessed on 10 March 2017).
- 2 Centuries-old Bohol Churches Devastated by 7.2 Magnitude Earthquake. Available online: http://newsinfo.inquirer.net/507125/centuries-old-baclayon-church-damaged-by-7-2-magnitude-quake (accessed on 15 December 2016).
- Feick, R.; Roche, S. Understanding the value of VGI. In Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice; Sui, D., Elwood, S., Goodchild, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 15–29. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Eckle, M.; Kuo, C.-L.; Herfort, B.; Fan, H.; Zipf, A. Monitoring and Assessing Post-Disaster Tourism Recovery Using Geotagged Social Media Data. ISPRS Int. J. Geo-Inf. 2017, 6, 144. https://doi.org/10.3390/ijgi6050144
Yan Y, Eckle M, Kuo C-L, Herfort B, Fan H, Zipf A. Monitoring and Assessing Post-Disaster Tourism Recovery Using Geotagged Social Media Data. ISPRS International Journal of Geo-Information. 2017; 6(5):144. https://doi.org/10.3390/ijgi6050144
Chicago/Turabian StyleYan, Yingwei, Melanie Eckle, Chiao-Ling Kuo, Benjamin Herfort, Hongchao Fan, and Alexander Zipf. 2017. "Monitoring and Assessing Post-Disaster Tourism Recovery Using Geotagged Social Media Data" ISPRS International Journal of Geo-Information 6, no. 5: 144. https://doi.org/10.3390/ijgi6050144