Reduction Method for Mobile Laser Scanning Data
Abstract
:1. Introduction
- Option 1 processes non-georeferenced frames that can be (a) one frame or (b) all frames.
- Option 2 processes (c) the georeferenced 3D point cloud.
2. Materials and Methods
- The OptD method with one criterion optimization called the OptD-single.
- The OptD method with multi criteria optimization called the OptD-multi.
- step 1:
- Loading the points of the original dataset (N). We can choose: Option 1 with (a) one frame, (b) all frames for one Velodyne, or Option 2 with (c) georeferenced 3D point cloud.The details of each of the Options are shown in Figure 1.
- step 2:
- Establishing optimization criterion (f), e.g., numbers of points in reduced dataset, standard deviation for the dataset.
- step 3:
- The choice of initial width of strips (L). When choosing the appropriate strips width, some parameters (depends on the user) can be taken into consideration: the average distance between points in the measurement set as well as the distance between the strips, which depends directly on the type of measurement (here: LiDAR), and they are a consequence of the principle of LiDAR measurement. Another way the strip’s width determination can be performed is in an iterative process (it is changed with a fixed interval until a satisfactory solution is achieved).
- step 4:
- Dividing the original (input) dataset into measurement strips (nL).
- step 5:
- Selection of measurement points for each strip. An example of measurement strip is presented in Figure 2.
- step 6:
- Selecting the cartographic line generalization method, e.g. the D-P or V-W.
- step 7:
- Using the selected generalization method in the Y0Z plane (vertical plane) for each measurement strip and choosing the tolerance parameters in the selected generalization method. For the D-P method, it is a distance of tolerance (t). The initial value of the section is defined by the user; the following values are determined in an iterative process. Figure 3 illustrates the steps.
- step 8:
- Obtaining the reduced/output dataset with the number of M, where M < N.
- step 9:
- Verifying whether the obtained dataset in step 8 fits the specified criterion optimization. If so, the reduction process is completed, and the obtained set from step 8 is the optimal/the best dataset. If not, steps 6–9 are repeated in which the tolerance parameter is adjusted in step 7. If repeating steps 6–9 do not provide a solution, the width of the measurement strip in step 3 must be changed.
3. Sensors and Data Processing
4. Results
5. Discussion and Conclusions
- Stage 1:
- obtaining a point cloud,
- Stage 2:
- pre-processing (including the filtration process),
- Stage 3:
- main processing (including DTM or DEM construction),
- Stage 4:
- visualization.
- Reduction of large MLS datasets.
- Selection of the optimal dataset based on the given optimization criterion.
- Reduced main processing time (the fewer points in the dataset, the shorter the DTM or DEM generation process).
- Reduced time and costs of MLS cloud processing, which, in turn, enable effective analysis of the acquired information resources.
- Control over the size of the resulting dataset.
Author Contributions
Funding
Conflicts of Interest
References
- Kukko, A. Road Environment Mapper—3D Data Capturing with Mobile Mapping. Licentiate’s Thesis, Helsinki University of Technology, Espoo, Finland, 2009; p. 158. [Google Scholar]
- Kukko, A.; Kaartinen, H.; Hyyppä, J.; Chen, Y. Multiplatform Mobile laser scanning: Usability and performance. Sensors 2012, 12, 11712–11733. [Google Scholar] [CrossRef]
- Szulwic, J.; Tysiąc, P. Mobile Laser Scanning Calibration on a Marine Platform. Polish Marit. Res. 2018, 25, 159–165. [Google Scholar] [CrossRef]
- Graham, L. Mobile mapping systems overview. Photogramm. Eng. Remote Sens. 2010, 76, 222–228. [Google Scholar]
- El-Halawany, S.; Moussa, A.; Lichti, D.D.; El-Sheimy, N. Detection of Road Curb from Mobile Terrestrial Laser Scanner Point Cloud. In Proceedings of the 2011 ISPRS Workshop om Laser Scanning, Calgary, AB, Canada, 29–31 August 2011. [Google Scholar]
- Hruza, P.; Mikita, T.; Tyagur, N.; Krejza, Z.; Cibulka, M.; Procházková, A.; Patočka, Z. Detecting Forest Road Wearing Course Damage Using Different Methods of Remote Sensing. Remote Sens. 2018, 10, 492. [Google Scholar] [CrossRef]
- Mikrut, S.; Kohut, P.; Pyka, K.; Tokarczyk, R.; Barszcz, T.; Uhl, T. Mobile Laser Scanning Systems for Measuring the Clearance Gauge of Railways: State of Play, Testing and Outlook. Sensors 2016, 16, 683. [Google Scholar] [CrossRef] [PubMed]
- Barber, D.; Mills, J.; Smith-Voysey, S. Geometric validation of a ground-based mobile laser scanning system. ISPRS J. Photogramm. Remote Sens. 2008, 63, 128–141. [Google Scholar] [CrossRef]
- Yen, K.S.; Akin, K.; Lofton, A.; Ravani, B.; Lasky, T.A. Using Mobile Laser Scanning to Produce Digital Terrain Models of Pavement Surfaces; Final Report of the Advanced Highway Maintenance and Construction Technology Research Center Research Project; University of California at Davies: Pittsburgh, PA, USA, 2010; Available online: http://ahmct.ucdavis.edu/pdf/UCD-ARR-10-11-30-01.pdf (accessed on 9 July 2018).
- Glennie, C.; Lichti, D.D. Static calibration and analysis of the Velodyne HDL-64E S2 for high accuracy mobile scanning. Remote Sens. 2010, 2, 1610–1624. [Google Scholar] [CrossRef]
- Suchocki, C.; Katzer, J.; Rapiński, J. Terrestrial Laser Scanner as a Tool for Assessment of Saturation and Moisture Movement in Building Materials. Periodica Polytech. Civ. Eng. 2018, 1–6. [Google Scholar] [CrossRef]
- Błaszczak-Bąk, W.; Sobieraj, A.; Janicka, J. Zastosowanie lotniczego skaningu laserowego do oceny stanu dróg w planowaniu transport. Logistyka 2015, 4, 2478–2486. [Google Scholar]
- Borkowski, A.; Keller, W. An Attempt to ALS-data filtering in wavelet domain. In Proceedings of the 8th Bilateral Geodetic Meeting Poland-Italy, Wrocław, Poland, 22–24 June 2006. [Google Scholar]
- Brenner, C. Extraction of features from mobile laser scanning data for future driver assistance systems. In Advances in GIScience; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bauer-Marschallinger, B.; Sabel, D.; Wagner, W. Optimisation of global grids for high-resolution remote sensing data. Comput. Geosci. 2014, 72, 84–93. [Google Scholar] [CrossRef]
- Kozioł, K.; Knecht, J.; Szombra, S. The importance of hierarchy in the generalisation of DTM. Geomat. Eng. 2012, 2, 60–75. [Google Scholar]
- Błaszczak-Bąk, W. New Optimum Dataset method in LiDAR processing. Acta Geodyn. Geomater. 2016, 13, 379–386. [Google Scholar] [CrossRef]
- Błaszczak-Bąk, W.; Sobieraj-Żłobińska, A.; Kowalik, M. The OptD-multi method in LiDAR processing. Meas. Sci. Technol. 2017, 28, 075009. [Google Scholar] [CrossRef]
- Błaszczak-Bąk, W.; Sobieraj-Żłobińska, A.; Wieczorek, B. The Optimum Dataset method—Examples of the application. E3S Web Conf. 2018, 26, 00005. [Google Scholar] [CrossRef]
- Visvalingam, M.; Whyatt, J.D. Line generalization by repeated elimination of point. Cartogr. J. 1993, 30, 46–51. [Google Scholar] [CrossRef]
- Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartogr. 1973, 10, 112–122. [Google Scholar] [CrossRef]
- Jozkow, G.; Toth, C.; Grejner-Brzezinska, D. Uas Topographic Mapping with Velodyne Lidar Sensor. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-1, 201–208. [Google Scholar] [CrossRef]
Parameters | |||||||
---|---|---|---|---|---|---|---|
Dataset | Number of Points | SD (m) | Processing Time (s) | ||||
Frame 1 | −2.399 | 7.628 | −1.009 | 34 716 | 1.286 | - | - |
R90 | −2.399 | 7.628 | −0.995 | 31 385 | 1.279 | −0.007 | 10 |
R80 | −2.399 | 7.628 | −0.966 | 27 609 | 1.316 | −0.030 | 15 |
R70 | −2.399 | 7.628 | −0.957 | 24 393 | 1.361 | −0.075 | 19 |
R60 | −2.399 | 7.628 | −0.897 | 20 850 | 1.410 | −0.124 | 21 |
R50 | −2.399 | 7.628 | −0.837 | 17 388 | 1.459 | −0.173 | 25 |
R40 | −2.399 | 7.628 | −0.766 | 13 839 | 1.522 | −0.236 | 29 |
R30 | −2.399 | 7.628 | −0.747 | 10 404 | 1.604 | −0.318 | 32 |
R20 | −2.399 | 7.628 | −0.625 | 6 928 | 1.709 | −0.423 | 35 |
R10 | −2.399 | 7.628 | −0.485 | 3 429 | 1.923 | −0.637 | 38 |
Parameters | |||||||
---|---|---|---|---|---|---|---|
Dataset | Number of Points | SD (m) | Processing Time (s) | ||||
Frame 2 | −2.402 | 7.668 | −1.018 | 34 650 | 1.283 | - | - |
R90 | −2.402 | 7.668 | −1.004 | 31 204 | 1.281 | −0.002 | 9 |
R80 | −2.402 | 7.668 | −0.978 | 27 975 | 1.312 | −0.029 | 15 |
R70 | −2.402 | 7.668 | −0.967 | 24 068 | 1.362 | −0.079 | 18 |
R60 | −2.402 | 7.668 | −0.906 | 20 831 | 1.404 | −0.121 | 20 |
R50 | −2.402 | 7.668 | −0.846 | 17 287 | 1.450 | −0.167 | 24 |
R40 | −2.402 | 7.668 | −0.787 | 13 867 | 1.505 | −0.222 | 29 |
R30 | −2.402 | 7.668 | −0.766 | 10 479 | 1.570 | −0.287 | 31 |
R20 | −2.402 | 7.668 | −0.636 | 6 863 | 1.678 | −0.395 | 37 |
R10 | −2.402 | 7.668 | −0.491 | 3 474 | 1.929 | −0.646 | 39 |
Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
Dataset | File Size (kB) | Number of Points | SD (m) | Processing Time (s) | ||||
PC | 682,344 | −71.562 | 87.530 | 1.165 | 19,942,752 | 2.638 | - | - |
PC50 | 443,103 | −71.562 | 87.530 | 1.045 | 9,971,376 | 3.386 | −0.748 | 72 |
PC10 | 70,403 | −71.562 | 87.530 | 1.032 | 1,998,727 | 5.200 | −2.562 | 121 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczak-Bąk, W.; Koppanyi, Z.; Toth, C. Reduction Method for Mobile Laser Scanning Data. ISPRS Int. J. Geo-Inf. 2018, 7, 285. https://doi.org/10.3390/ijgi7070285
Błaszczak-Bąk W, Koppanyi Z, Toth C. Reduction Method for Mobile Laser Scanning Data. ISPRS International Journal of Geo-Information. 2018; 7(7):285. https://doi.org/10.3390/ijgi7070285
Chicago/Turabian StyleBłaszczak-Bąk, Wioleta, Zoltan Koppanyi, and Charles Toth. 2018. "Reduction Method for Mobile Laser Scanning Data" ISPRS International Journal of Geo-Information 7, no. 7: 285. https://doi.org/10.3390/ijgi7070285
APA StyleBłaszczak-Bąk, W., Koppanyi, Z., & Toth, C. (2018). Reduction Method for Mobile Laser Scanning Data. ISPRS International Journal of Geo-Information, 7(7), 285. https://doi.org/10.3390/ijgi7070285