Automation of Building Permission by Integration of BIM and Geospatial Data
Abstract
:1. Introduction
2. Related Studies
2.1. Formalisation of the Detailed Development Plans
2.2. Integration of BIM and Geospatial Data
2.3. Analytical Rule Checking
2.4. Visual Rule Checking
3. Inventory and Methodology for Checking Detailed Development Requirements
- (1)
- There is no specific BIM object for calculating the building footprint area (i.e., a method similar to Area Method A1 in Section 5.2 should be used).
- (2)
- There are digital models of roads, bridges, tunnels, etc. available as BIM models and/or geospatial data.
- (3)
- The BIM models contain information about the usage of the buildings.
4. Study of Building Height
4.1. Legal Rules for Building Height
- (1)
- The facade plane is derived from the side of the building that gives the highest building height regardless of orientation. This has the advantage that the orientation of the building does not influence the calculated building height.
- (2)
- For the 45-degree plane, dormers with a width of one third, or more, of the roof’s width are considered as large and shall be considered as parts of the roof. Dormers reaching the highest part of the roof are always included.
- (3)
- The ground plane is calculated from 16 points along the sides of the building. The points with the highest and lowest elevations are included and the remaining 14 points are evenly distributed along the sides of the building.
4.2. Methods and Implementation
4.2.1. Test Data
4.2.2. Method Implementation
4.3. Result and Evaluation
5. Study of Building Area
5.1. Legal Rules for Building Area (Densification)
5.2. Methods and Implementations
5.2.1. Manual Calculation of Building Area (Area Method M1)
5.2.2. Automated Area Calculation without Object Representing Footprint Area (Area Method A1)
5.2.3. Automated Area Calculation with Object Representing Footprint Area (Area Method A2)
5.2.4. Automated Area Calculation with IfcSpace Object and External Envelop Objects (Area Method A3)
5.3. Tested BIM Models
5.4. Result and Evaluation
6. Study of General Maintenance of the Character in a Built-Up Area
6.1. Legal Rules for Maintaining the Area Characteristics
6.2. Feasibility Study and Evaluation
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boverket. Får Jag Lov? 2018. Available online: https://www.boverket.se/sv/byggande/uppdrag/far-jag-lov/ (accessed on 27 May 2018).
- Hjelseth, E.; Nisbet, N. Capturing Normative Constraints by Use of the Semantic Mark-Up RASE Methodology (Proc., CIB W78 2011). Rotterdam, The Netherlands 2011: Conseil International du Bâtiment (CIB). Available online: http://2011-cibw078-w102.cstb.fr/papers/Paper-45.pdf (accessed on 30 May 2018).
- Beach, T.H.; Rezgui, Y.; Li, H.; Kasim, T. A rule-based semantic approach for automated regulatory compliance in the construction sector. Expert Syst. Appl. 2015, 42, 5219–5231. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Lee, J.-K.; Park, S.; Kim, I. Translating building legislation into a computer-executable format for evaluating building permit requirements. Autom. Constr. 2016, 71, 49–61. [Google Scholar] [CrossRef]
- Malsane, S.; Matthews, J.; Lockley, S.; Love, P.E.D.; Greenwood, D. Development of an object model for automated compliance checking. Autom. Constr. 2015, 49, 51–58. [Google Scholar] [CrossRef]
- Brasebin, M.; Perret, J.; Mustière, S.; Weber, C. A Generic Model to Exploit Urban Regulation Knowledge. ISPRS Int. J. Geo-Inf. 2016, 5, 14. [Google Scholar] [CrossRef]
- Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.-H. OGC City Geography Markup Language (CityGML) Encoding Standard, Version 2.0; OGC Doc No. 12-019; Open Geospatial Consortium. Available online: http://www.opengeospatial.org/standards/citygml (accessed on 30 May 2018).
- Gröger, G.; Plümer, L. CityGML—Interoperable semantic 3D city models. ISPRS J. Photogramm. Rem. Sens. 2012, 71, 12–33. [Google Scholar] [CrossRef]
- Kolbe, T.H. Representing and exchanging 3D city models with CityGML. In 3D Geo-Information Sciences; Zlatanova, S., Lee, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 15–31. [Google Scholar]
- INSPIRE. D2.8.I.6 INSPIRE Data Specification on Cadastral Parcels—Guidelines; INSPIRE Thematic Working Group Cadastral Parcels; European Union: Brussels, Belgium, 2009. [Google Scholar]
- INSPIRE. D2.8.III.4 Data Specification on Land Use—Draft Guidelines; NSPIRE Thematic Working Group Land Use; European Union: Brussels, Belgium, 2012. [Google Scholar]
- Donkers, S.; Ledoux, H.; Zhao, J.; Stoter, J. Automatic conversion of IFC datasets to geometrically and semanticaly correct CityGML LOD3 buildings. Trans. GIS 2016, 20, 547–569. [Google Scholar] [CrossRef]
- Abdul-Rahman, A.; Pilouk, M. Spatial Data Modelling for 3D GIS, 2D and 3D Spatial Data Representations; Springer: Berlin, Germany, 2007. [Google Scholar]
- Kang, T. Development of a Conceptual Mapping Standard to Link Building and Geospatial Information. ISPRS Int. J. Geo-Inf. 2018, 7, 162. [Google Scholar] [CrossRef]
- Isikdag, U.; Zlatanova, S. Towards Defining a Framework for Automatic Generation of Buildings in CityGML Using Building Information Models. In 3D Geo-Information Sciences; Lee, J., Zlatanova, S., Eds.; Springer: Berlin, Germany, 2009; pp. 79–97. [Google Scholar]
- De Laat, R.; van Berlo, L. Integration of BIM and GIS: The Development of the CityGML GeoBIM Extension. In Advances in 3D Geo-Information Sciences. Lecture Notes in Geoinformation and Cartography; Kolbe, T., König, G., Nagel, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- El-Mekawy, M.; Östman, A.; Hijazi, I. An Evaluation of IFC-CityGML Unidirectional Conversion. Int. J. Adv. Comput. Sci. Appl. 2012, 3, 159–171. [Google Scholar] [CrossRef]
- Arroyo Ohori, K.; Biljecki, F.; Diakité, A.; Krijnen, T.F.; Ledoux, H.; Stoter, J. Towards an integration of GIS and BIM data: What are the geometric and topological issues? ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Jusuf, S.K.; Mousseau, B.; Godfroid, G.; Hui, V.S. Integrated modeling of CityGML and IFC for city/neighborhood development for urban microclimates analysis. Energy Proc. 2017, 122, 145–150. [Google Scholar] [CrossRef]
- Floros, G.; Pispidikis, I.; Dimopoulou, E. Investigating integration capabilities between IFC and citygml LOD3 for 3D city modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 1–6. [Google Scholar] [CrossRef]
- Olsson, P.-O. Conversion of an IFC-model to a lod2-3 3D-GIS building model. In Proceedings of the AGILE Conference, Lund, Sweden, 12–15 June 2018. [Google Scholar]
- Van Berlo, L.; Dijkmans, T.; Stoter, J. Experiment for Integrating Dutch 3D Spatial Planning and BIM for Checking Building Permits. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-2/W1, 279–284. [Google Scholar] [CrossRef]
- Warmer, J.; Kleppe, A. The Object Constraint Language: Precise Modeling with UML; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1999. [Google Scholar]
- Benner, J.; Geiger, A.; Häfele, K.-H. Concept for Building Licensing Based on Standardized 3D Geo Information. In Proceedings of the 5th International 3D GeoInfo Conference, Berlin, Germany, 3–4 November 2010. [Google Scholar]
- Eastman, C.; Lee, J.-M.; Jeong, Y.-S.; Lee, J.-K. Automatic rule-based checking of building designs. Autom. Constr. 2009, 18, 1011–1033. [Google Scholar] [CrossRef]
- Zhang, J. A logic-based representation and tree-based visualization method for building regulatory requirements. Vis. Eng. 2017, 5, 2. [Google Scholar] [CrossRef]
- Pauwels, P.; De Farias, T.M.; Zhang, C.; Roxin, A.; Beetz, J.; De Roo, J.; Nicolle, C. A performance benchmark over semantic rule checking approaches in construction industry. Adv. Eng. Inform. 2017, 33, 68–88. [Google Scholar] [CrossRef]
- Biljecki, F.; Heuvelink, G.B.M.; Ledoux, H.; Stoter, J. The effect of acquisition error and level of detail on the accuracy of spatial analyses. Cartogr. Geogr. Inf. Sci. 2018, 45, 156–176. [Google Scholar] [CrossRef]
- Collinson, A. Virtual Worlds. Cartogr. J. 1997, 34, 117–124. [Google Scholar] [CrossRef]
- Wilkening, J.; Fabrikant, S.I. How do decision time and realism affect map-based decision making? In Spatial Information Theory, Proceedings of the 10th International Conference, COSIT 2011, Belfast, ME, USA, 12–16 September 2011; Egenhofer, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–19. [Google Scholar]
- Häberling, C.; Bär, H.; Hurni, L. Proposed Cartographic Design Principles for 3D Maps: A Contribution to Extended Cartographic Theory. Cartographica 2008, 43, 175–188. [Google Scholar] [CrossRef]
- Smallman, H.S.; St John, M. Naïve realism: Misplaced faith in realistic displays. Ergon. Des. 2005, 13, 6–13. [Google Scholar] [CrossRef]
- Zanola, S.; Fabrikant, S.I.; Cöltekin, A. The effect of realism on the confidence in spatial data quality in stereoscopic 3D displays. In Proceedings of the 24th International Cartographic Conference, Santiago, Chile, 15–21 November 2009. [Google Scholar]
- Semmo, A.; Trapp, M.; Jobst, M.; Döllner, J. Cartography-Oriented Design of 3D Geospatial Information Visualization—Overview and Techniques. Cartogr. J. 2015, 52, 95–106. [Google Scholar] [CrossRef]
- Peters, S.; Jahnke, M.; Murphy, C.E.; Meng, L.; Abdul-Rahman, A. Cartographic Enrichment of 3D City Models—State of the Art and Research Perspectives. In Advances in 3D Geoinformation. Lecture Notes in Geoinformation and Cartography; Abdul-Rahman, A., Ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Mao, B.; Harrie, L. Methodology for the efficient progressive distribution and visualization of a 3D city model 3D building objects. ISPRS Int. J. Geo-Inf. 2016, 5, 418–446. [Google Scholar] [CrossRef]
- Kada, M. Generalisation of 3D Building Models by Cell Decomposition and Primitive Instancing. In Proceedings of the Joint ISPRS Workshop on Visualization and Exploration of Geospatial Data, Stuttgart, Germany, 29–30 June 2007. [Google Scholar]
- Fan, H.; Meng, L. A three-step approach of simplifying 3D buildings. Int. J. Geoinf. Sci. 2012, 26, 1091–1107. [Google Scholar] [CrossRef]
- Baig, S.U.; Abdul-Rahman, A. Generalization of buildings within the framework of CityGML. Geo-Spat. Inf. Sci. 2013, 16, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Neuville, R.; Pouliot, J.; Poux, F.; de Rudde, L.; Billen, R. A Formalized 3D Geovisualization Illustrated to Selectivity Purpose of Virtual 3D City Model. ISPRS Int. J. Geo-Inf. 2018, 7, 194. [Google Scholar] [CrossRef]
- Lemmen, C.; van Oosterom, P.; Bennett, R. The Land Administration Domain Model. Land Use Policy 2015, 49, 535–545. [Google Scholar] [CrossRef]
- Kalogianni, E.; Dimopoulou, E.; Quak, W.; Germann, M.; Jenni, L.; van Oosterom, P. INTERLIS Language for Modelling Legal 3D Spaces and Physical 3D Objects by Including Formalized Implementable Constraints and Meaningful Code Lists. ISPRS Int. J. Geo-Inf. 2017, 6, 319. [Google Scholar] [CrossRef]
- Boverket. Rapport 2014:4, Uppdrag Att Utreda Definitioner på Byggnadshöjd, Nockhöjd, Totalhöjd, Vind, Suterrängvåning Och Källare. Available online: http://www.regelradet.se/wp-content/files_mf/14043797672014_137_Definitioner.pdf (accessed on 27 May 2018).
- Boverket. Rapport 2016:30, Regeringsuppdrag. Exempel på Reglering av Byggnadsverks Höjder Och Våningsantal. Uppdrag Att ta fram Förslag till Författningsreglering Avseende Vissa Centrala Termer Som Behövs vid Tillämpningen av Plan-Och Bygglagen (2010:900). Available online: https://www.boverket.se/contentassets/f92bd42827524152bf66e6fbb7c75351/exempel-pa-reglering-av-byggnadsverks-hojder-och-vaningsantal.pdf (accessed on 27 May 2018).
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Kalantari, M. Future City Pilot 1—Automating Urban Planning Using Web Processing Service Engineering Report. Open Geospatial Consortium, 20 October 2017. Available online: http://docs.opengeospatial.org/per/16-099.html (accessed on 26 June 2018).
- BuildingSMART, MVD Overview Summary. Available online: http://www.buildingsmart-tech.org/specifications/mvd-overview/mvd-overview-summary (accessed on 27 May 2018).
- Zhang, C.; Beetz, J.; Weise, M. Model view checking: Automated validation for IFC building models. In eWork and eBusiness in Architecture, Engineering and Construction: ECPPM, 2014; Mahdavi, A., Ed.; CRC Press: Vienna, Austria, 2014. [Google Scholar]
- BuildingSMART, Information Delivery Manuals. Available online: http://iug.buildingsmart.org/idms/ (accessed on 27 May 2018).
- Lee, Y.-C.; Eastman, C.M.; Solihin, W. An ontology-based approach for developing data exchange requirements and model views of building information modeling. Adv. Eng. Inform. 2016, 30, 354–367. [Google Scholar] [CrossRef]
- Solihin, W.; Eastman, C.; Lee, Y.-C. Toward robust and quantifiable automated IFC quality validation. Adv. Eng. Inform. 2015, 29, 739–756. [Google Scholar] [CrossRef]
- Biljecki, F.; Ledoux, H.; Stoter, J. An improved LOD specification for 3D building models. Comput. Environ. Urban Syst. 2016, 59, 25–37. [Google Scholar] [CrossRef] [Green Version]
- BuildingSMART, Industry Foundation Classes Release 4 (IFC4). Available online: http://www.buildingsmart-tech.org/ifc/IFC4/final/html/ (accessed on 27 May 2018).
- Uggla, G.; Horemuz, M. Geographic Capabilities and Limitations of IFC. Autom. Constr. 2018, in press. [Google Scholar]
- Rauschert, I.; Agrawal, P.; Sharma, R.; Fuhrmann, S.; Brewer, I.; MacEachren, A. Designing a human-centered, multimodal GIS interface to support emergency management. In Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, McLean, VA, USA, 8–9 November 2002; ACM: New York, NY, USA, 2002; pp. 119–124. [Google Scholar]
BIM Data | Geospatial Data | BIM & Geospatial Data | Total | |
---|---|---|---|---|
Quantitative | 25% | 30% | 30% | 85% |
Visual | 2% | 1% | 2% | 5% |
Qualitative | - | - | - | 10% |
Quantitative—BIM data | Roof pitch (degree) |
Quantitative—Geospatial data | Slope of the ground (gradient) |
Quantitative—BIM and geospatial data | Building heights (m) and densification levels (total building footprint area divided by real estate area) |
Visual BIM data | Configuration of windows should follow certain characteristics |
Visual Geospatial data | Configuration of property units |
Visual BIM and geospatial data | General maintenance of the character in a built-up area |
Qualitative | Maintenance of specific historical and artistic values |
Model | Manual Calculation | Without Object Representing Footprint Area | With Object Representing Footprint Area | Calculation with IfcSpace Object |
---|---|---|---|---|
#1 Spira 168 | 111.3 | 113.5 | ||
#2 Spira 175 | 111.3 | 113.5 | ||
#3 Kamakura House | 57.7 | 57.7 | 57.7 | |
#4 Multihuset | 3438.5 | 3424 | ||
#5 Nyvångsskolan F | 996.5 | 998.8 | ||
#6 Nyvångsskolan H | 547.3 | 544.5 | ||
#7 KTH demobuilding | 110.1 | 110.1 | ||
#8 Revit house | 248.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olsson, P.-O.; Axelsson, J.; Hooper, M.; Harrie, L. Automation of Building Permission by Integration of BIM and Geospatial Data. ISPRS Int. J. Geo-Inf. 2018, 7, 307. https://doi.org/10.3390/ijgi7080307
Olsson P-O, Axelsson J, Hooper M, Harrie L. Automation of Building Permission by Integration of BIM and Geospatial Data. ISPRS International Journal of Geo-Information. 2018; 7(8):307. https://doi.org/10.3390/ijgi7080307
Chicago/Turabian StyleOlsson, Per-Ola, Josefine Axelsson, Martin Hooper, and Lars Harrie. 2018. "Automation of Building Permission by Integration of BIM and Geospatial Data" ISPRS International Journal of Geo-Information 7, no. 8: 307. https://doi.org/10.3390/ijgi7080307