Accuracy Improvement of Airborne Lidar Strip Adjustment by Using Height Data and Surface Feature Strength Information Derived from the Tensor Voting Algorithm
Abstract
:1. Introduction
2. Geometric Feature Information
2.1. Geometric Feature Strength
2.2. Properties of the Surface Feature Strength
3. Strip Adjustment
3.1. Mathematical Models and Grid Setting
3.2. PLS Method
4. Experiments and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Özcan, A.H.; Ünsalan, C. LiDAR Data Filtering and DTM Generation Using Empirical Mode Decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 360–371. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, Z.; Chen, G.; Han, Y.; Wang, Y. A Hybrid Process/Thread Parallel Algorithm for Generating DEM from LiDAR Points. ISPRS Int. J. Geo-Inf. 2017, 6, 300. [Google Scholar] [CrossRef] [Green Version]
- You, R.J.; Lin, B.C. Building feature extraction from airborne lidar data based on tensor voting algorithm. Photogramm. Eng. Remote Sens. 2011, 77, 1221–1231. [Google Scholar] [CrossRef]
- Albers, B.; Kada, M.; Wichmann, A. Automatic Extraction and Regularization of Building Outlines from Airborne LIDAR Point Clouds. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 555–560. [Google Scholar] [CrossRef]
- Weiss, U.; Biber, P.; Laible, S.; Bohlmann, K.; Zell, A. Plant species classification using a 3D LIDAR sensor and machine learning. In Proceedings of the 2010 Ninth International Conference on Machine Learning and Applications, Washington, DC, USA, 12–14 December 2010; pp. 339–345. [Google Scholar]
- Feng, Q.; Zhu, D.; Yang, J.; Li, B. Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use Mapping based on a Modified Two-Branch Convolutional Neural Network. ISPRS Int. J. Geo-Inf. 2019, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Peerbhay, K.; Mutanga, O.; Lottering, R.; Bangamwabo, V.; Ismail, R. Detecting bugweed (Solanum mauritianum) abundance in plantation forestry using multisource remote sensing. ISPRS J. Photogramm. Remote Sens. 2016, 121, 167–176. [Google Scholar] [CrossRef]
- Aijazi, A.K.; Checchin, P.; Trassoudaine, L. Detecting and updating changes in lidar point clouds for automatic 3d urban cartography. ISPRS Ann. Photogramm. Remote Sens. Spat Inf. Sci. II 2013, 2, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Qin, R.; Tian, J.; Reinartz, P. 3D change detection–approaches and applications. ISPRS J. Photogramm. Remote Sens. 2016, 122, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Mallet, C.; Bretar, F. Full-waveform topographic lidar: State-of-the-art. J. Photogramm. Remote Sens. 2009, 64, 1–16. [Google Scholar] [CrossRef]
- Alexander, C.; Tansey, K.; Kaduk, J.; Holland, D.; Tate, N.J. Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas. ISPRS J. Photogramm. Remote Sens. 2010, 65, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Heinzel, J.; Koch, B. Exploring full-waveform LiDAR parameters for tree species classification. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 152–160. [Google Scholar] [CrossRef]
- Höfle, B.; Hollaus, M.; Hagenauer, J. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2012, 67, 134–147. [Google Scholar] [CrossRef]
- Lemmens, M.J.P.M. Accurate height information from airborne laser-altimetry. In Proceedings of the 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; Volume 1, pp. 423–426. [Google Scholar]
- Schenk, T. Modeling and Analyzing Systematic Errors in Airborne Laser Scanners; Technical Report Photogrammetry No. 19; Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University: Colombus, OH, USA, 2001; 40p. [Google Scholar]
- Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. Photogramm. Remote Sens. 1999, 54, 68–82. [Google Scholar] [CrossRef]
- Csanyi, N.; Toth, C. Improvement of LiDAR Data Accuracy Using LiDAR-Specific Ground Targets. Photogramm. Eng. Remote Sens. 2007, 73, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Toth, C.; Paska, E.; Brzezinska, D. Using road pavement markings as ground control for Lidar data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 36, 173–178. [Google Scholar]
- Skaloud, J.; Lichti, D. Rigorous approach to boresight self-calibration in airborne laser scanning. ISPRS J. Photogramm. Remote Sens. 2006, 61, 47–59. [Google Scholar] [CrossRef]
- Skaloud, J.; Schaer, P. Towards automated LiDAR boresight self-calibration. In Proceedings of the 5th International Symposium on Mobile Mapping Technology, Padua, Italy, 28–31 May 2007. [Google Scholar]
- Habib, A.F.; Bang, K.I.; Shin, S.W.; Mitishita, E. LiDAR system self-calibration using planar patches from photogrammetric data. In Proceedings of the 5th International Symposium on Mobile Mapping Technology, Padua, Italy, 28–31 May 2007. [Google Scholar]
- Fritsch, D.; Kilian, J. Filtering and Calibration of Laser Scanner Measurements. In Proceedings of the International Archives of Photogrammetry and Remote Sensing, Munich, Germany, 17 August 1994; Volume 2357, pp. 227–234. [Google Scholar]
- Kilian, J.; Haala, N.; Englich, M. Capture and Evaluation of Airborne Laser Scanner Data. In Proceedings of the International Archives of Photogrammetry and Remote Sensing, Vienna, Austria, 12–18 July 1996; Volume 31, pp. 383–388. [Google Scholar]
- Crombaghs, M.J.E.; De Min, E.J.; Bruegelmann, R. On the Adjustment of Overlapping Strips of Laser Altimeter Height Data. Int. Arch. Photogramm. Remote Sens. 2000, 33, 230–237. [Google Scholar]
- Vosselman, G.; Maas, H.G. Adjustment and Filtering of Raw Laser Altimetry Data. In Proceedings of the OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Height Models, Stockholm, Sweden, 1–3 March 2001; pp. 62–73. [Google Scholar]
- Burman, H. Calibration and Orientation of Airborne Image and Laser Scanner Data Using GPS and INS. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2000. [Google Scholar]
- Maas, H.G. Methods for Measuring Height and Planimetry Discrepancies in Airborne Laser Scanner Data. Photogramm. Eng. Remote Sens. 2002, 68, 933–940. [Google Scholar]
- Zhang, Y.; Xiong, X.; Zheng, M.; Huang, X. LiDAR Strip Adjustment Using Multi-Features Matched with Aerial Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 976–987. [Google Scholar] [CrossRef]
- Filin, S. Elimination of Systematic Errors from Airborne Laser Scanning Data. In Proceedings of the 2005 IEEE IGARSS Conference, Seoul, Korea, 25–29 July 2005; pp. 517–521. [Google Scholar]
- Lee, J.; Yu, K.; Kim, Y.; Habib, A.F. Adjustment of discrepancies between LIDAR data strips using linear features. IEEE Geosci. Remote Sens. Lett. 2007, 4, 475–479. [Google Scholar] [CrossRef]
- Höfle, B.; Pfeifer, N. Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS J. Photogramm. Remote Sens. 2007, 62, 415–433. [Google Scholar] [CrossRef]
- Jutzi, B.; Gross, H. Normalization of LiDAR Intensity Data Based on Range and Surface Incidence Angle. Int. Arch. Photogramm. Remote Sens. 2009, 38, 213–218. [Google Scholar]
- Yan, W.Y.; Shaker, A. Radiometric correction and normalization of airborne LiDAR intensity data for improving land-cover classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7658–7673. [Google Scholar]
- Medioni, G.; Lee, M.S.; Tang, C.K. A Computational Framework for Segmentation and Grouping; Elsevier Science: New York, NY, USA, 2000; 260p. [Google Scholar]
- You, R.J.; Lin, B.C. A Quality Prediction Method for Building Model Reconstruction using Lidar Data and Topographic Map. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3471–3480. [Google Scholar] [CrossRef]
- Lee, C.L.; You, R.J. Lidar Strip Adjustment with Height and feature strength Data. In Proceedings of the 29th Asian Conference on Remote Sensing, Colombo, Sri Lanka, 10–14 November 2008. [Google Scholar]
- Lee, C.L.; You, R.J. Mechanism for Lidar strip adjustment with elevation and feature strength data. In Proceedings of the 30th Asian Conference on Remote Sensing, Beijing, China, 18–23 October 2009. [Google Scholar]
- Helland, I.S. On the structure of partial least squares regression. Commun. Stat. Simul. Comput. 1988, 17, 581–607. [Google Scholar] [CrossRef]
- Helland, I.S. Partial least squares regression and statistical models. Scand. J. Stat. 1990, 17, 97–114. [Google Scholar]
- Young, P.J. A reformulation of the partial least squares regression algorithm. SIAM J. Sci. Comput. 1994, 15, 225–230. [Google Scholar] [CrossRef]
- Cormen, T.; Stein, C.; Rivest, R.; Leiserson, C. Introduction to Algorithms, 3rd ed.; McGraw-Hill Higher Education: New York, NY, USA, 2009. [Google Scholar]
- Rao, C.R.; Toutenburg, H. Linear Models: Least Squares and Alternatives, 2nd ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Grafarend, E.W.; Krumm, F.; Okeke, F. Curvilinear geodetic datum transformations. Oceanogr. Lit. Rev. 1996, 2, 135. [Google Scholar]
- Klein, H.; Förstner, W. Realization of Automatic Error Detection in the Block Adjustment Program PAT-M43 Using Robust Estimators. Int. Arch. Photogramm. Remote Sens. 1984, 25, 234–245. [Google Scholar]
- Helmert, P.R. Die Ausgleichsrechnung Nach der Methode der Kleinsten Quadrate; Springer: Leipzig, Germany, 1924. [Google Scholar]
Case | RED (m) | ABD (m) |
---|---|---|
1 | 0.203 | 0.111 |
2 | 0.406 | 0.261 |
3 | 0.067 | 0.088 |
4 | 0.057 | 0.073 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, R.-J.; Lee, C.-L. Accuracy Improvement of Airborne Lidar Strip Adjustment by Using Height Data and Surface Feature Strength Information Derived from the Tensor Voting Algorithm. ISPRS Int. J. Geo-Inf. 2020, 9, 50. https://doi.org/10.3390/ijgi9010050
You R-J, Lee C-L. Accuracy Improvement of Airborne Lidar Strip Adjustment by Using Height Data and Surface Feature Strength Information Derived from the Tensor Voting Algorithm. ISPRS International Journal of Geo-Information. 2020; 9(1):50. https://doi.org/10.3390/ijgi9010050
Chicago/Turabian StyleYou, Rey-Jer, and Chao-Liang Lee. 2020. "Accuracy Improvement of Airborne Lidar Strip Adjustment by Using Height Data and Surface Feature Strength Information Derived from the Tensor Voting Algorithm" ISPRS International Journal of Geo-Information 9, no. 1: 50. https://doi.org/10.3390/ijgi9010050