Spatial Analysis of Settlement Structures to Identify Pattern Formation Mechanisms in Inter-Urban Systems
Abstract
:1. Introduction
2. Conceptual Framework
- (i)
- the number of objects investigated;
- (ii)
- the density of objects within the investigated area; and
- (iii)
- the regularity, which we quantify with a special characteristic value.
3. Data and Methods
3.1. Data
3.2. Method
4. Analysis
4.1. Settlement Arrangement
4.2. Size Distribution
4.3. Classes
4.4. Regular Settlement Structures
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Average-Nearest Neighbour Index | |
CPT | central place theory |
DLR | German Aerospace Center |
GUF | Global Urban Footprint |
s.s. | sample square |
Appendix A. Further Data
Data Set | West | South | East | North |
---|---|---|---|---|
Argentina | −63.424 | −33.800 | −61.265 | −31.996 |
China | 114.065 | 32.800 | 116.200 | 34.603 |
Egypt | 30.014 | 29.876 | 32.084 | 31.680 |
France | 3.350 | 47.401 | 6.000 | 49.200 |
Ghana | −2.278 | 5.419 | 0.473 | 7.228 |
India | 74.400 | 28.896 | 76.451 | 30.700 |
USA | −100.000 | 38.500 | 97.707 | 40.301 |
2 km | 4 km | 6 km | 8 km | 10 km | 12 km | 15 km | |
---|---|---|---|---|---|---|---|
Argentina | |||||||
% of s.s. with | 4.28 | 7.45 | 5.05 | 2.69 | 1.25 | 0.94 | 0.23 |
% of s.s. with and or | 68.18 | 71.53 | 79.42 | 85.03 | 81.63 | 87.50 | 75.00 |
average N in s.s. with | 5.44 | 5.69 | 6.77 | 7.20 | 7.10 | 7.65 | 6.20 |
average N in s.s. with and or | 5.58 | 5.85 | 7.16 | 7.49 | 7.49 | 8.00 | 6.33 |
China | |||||||
% of s.s. with | 13.97 | 1.75 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 |
% of s.s. with and or | 82.96 | 94.71 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 |
average N in s.s. with | 6.56 | 12.24 | 22.86 | - | - | - | - |
average N in s.s. with and or | 6.79 | 12.60 | 22.86 | - | - | - | - |
Egypt | |||||||
% of s.s. with | 9.58 | 2.30 | 0.50 | 0.18 | 0.16 | 0.00 | 0.03 |
% of s.s. with and or | 77.03 | 84.73 | 75.76 | 76.92 | 58.33 | 0.00 | 100.00 |
average N in s.s. with | 6.08 | 7.54 | 6.42 | 7.31 | 6.75 | - | 10 |
average N in s.s. with and or | 6.31 | 7.91 | 6.68 | 8.00 | 7.57 | - | 10 |
France | |||||||
% of s.s. with | 1.87 | 0.95 | 0.31 | 0.07 | 0.00 | 0.00 | 0.00 |
% of s.s. with and or | 70.6 | 71.43 | 67.86 | 71.43 | 0.00 | 0.00 | 0.00 |
average N in s.s. with | 5.78 | 5.89 | 5.86 | 7.14 | - | - | - |
average N in s.s. with and or | 6.00 | 6.09 | 6.16 | 7.60 | - | - | - |
Ghana | |||||||
% of s.s. with | 1.62 | 2.86 | 2.03 | 0.87 | 0.28 | 0.06 | 0.19 |
% of s.s. with and or | 74.80 | 70.83 | 79.28 | 82.54 | 86.36 | 100.00 | 68.75 |
average N in s.s. with | 6.31 | 5.53 | 6.68 | 7.24 | 8.95 | 5.80 | 5.63 |
average N in s.s. with and or | 6.62 | 5.61 | 6.97 | 7.52 | 9.42 | 5.80 | 5.64 |
India | |||||||
% of s.s. with | 7.30 | 4.00 | 1.56 | 0.65 | 0.31 | 0.20 | 0.08 |
% of s.s. with and or | 70.27 | 75.23 | 76.74 | 67.80 | 85.71 | 94.44 | 100.00 |
average N in s.s. with | 5.82 | 6.34 | 6.30 | 6.59 | 6.32 | 7.39 | 11.29 |
average N in s.s. with and or | 6.03 | 6.69 | 6.54 | 7.23 | 6.54 | 7.41 | 11.29 |
USA | |||||||
% of s.s. with | 0.80 | 2.73 | 3.51 | 2.60 | 1.73 | 0.80 | 0.21 |
% of s.s. with and or | 63.64 | 58.54 | 77.30 | 73.99 | 76.43 | 85.51 | 94.44 |
average N in s.s. with | 5.67 | 5.37 | 5.91 | 6.09 | 6.41 | 6.86 | 7.28 |
average N in s.s. with and or | 5.86 | 5.42 | 6.09 | 6.32 | 6.72 | 7.05 | 7.41 |
References
- Retief, F.; Bond, A.; Pope, J.; Morrison-Saunders, A.; King, N. Global megatrends and their implications for environmental assessment practice. Environ. Impact Assess. Rev. 2016, 61, 52–60. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.; Taubenböck, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote. Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Batty, M. The New Science of Cities; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Batty, M. Building a science of cities. Cities 2012, 29, S9–S16. [Google Scholar] [CrossRef] [Green Version]
- Portugali, J. Complexity, Cognition and the City; Springer complexity, Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2011. [Google Scholar]
- Taubenbock, H.; Debray, H.; Qiu, C.; Schmitt, M.; Wang, Y.; Zhu, X. Seven city types representing morphologic configurations of cities across the globe. Cities 2020, 105, 102814. [Google Scholar] [CrossRef]
- Benenson, I.; Torrens, P.M. Geosimulation: Automata-Based Modelling of Urban Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Liu, Y.; Batty, M.; Wang, S.; Corcoran, J. Modelling urban change with cellular automata: Contemporary issues and future research directions. Prog. Hum. Geogr. 2019. [Google Scholar] [CrossRef]
- Rathore, M.M.; Ahmad, A.; Paul, A.; Rho, S. Urban planning and building smart cities based on the internet of things using big data analytics. Comput. Netw. 2016, 101, 63–80. [Google Scholar] [CrossRef]
- Wu, N.; Silva, E.A. Artificial intelligence solutions for urban land dynamics: A review. J. Plan. Lit. 2010, 24, 246–265. [Google Scholar]
- Zhao, K.; Tarkoma, S.; Liu, S.; Vo, H. Urban human mobility data mining: An overview. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1911–1920. [Google Scholar]
- Healy, K. Fuck Nuance. Sociol. Theory 2017, 35, 118–127. [Google Scholar] [CrossRef]
- Christaller, W. Die Zentralen Orte in Süddeutschland: Eine Ökonomisch-Geographische Untersuchung Über die Gesetzmässigkeit der Verbreitung und Entwicklung der Siedlungen mit Städtischen Funktionen; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 1933. [Google Scholar]
- Allen, P.M.; Sanglier, M. A dynamic model of growth in a central place system. Geogr. Anal. 1979, 11, 256–272. [Google Scholar] [CrossRef]
- AbouKorin, A.A. Spatial analysis of the urban system in the Nile Valley of Egypt. Ain Shams Eng. J. 2018, 9, 1819–1829. [Google Scholar] [CrossRef]
- Yang, R.; Xu, Q.; Long, H. Spatial distribution characteristics and optimized reconstruction analysis of China’s rural settlements during the process of rapid urbanisation. J. Rural Stud. 2016, 47, 413–424. [Google Scholar] [CrossRef]
- Krugman, P. The Self-Organizing Economy; Number 338.9 KRU 1996; CIMMYT: Mexico City, Mexico, 1996. [Google Scholar]
- Cross, M.C.; Hohenberg, P.C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1993, 65, 851. [Google Scholar] [CrossRef] [Green Version]
- Purvis, B.; Mao, Y.; Robinson, D. Entropy and its application to urban systems. Entropy 2019, 21, 56. [Google Scholar] [CrossRef] [Green Version]
- Levashova, N.; Sidorova, A.; Semina, A.; Ni, M. A Spatio-Temporal Autowave Model of Shanghai Territory Development. Sustainability 2019, 11, 3658. [Google Scholar] [CrossRef] [Green Version]
- Medda, F.; Nijkamp, P.; Rietveld, P. A Morphogenetic Perspective on Spatial Complexity. In Complexity and Spatial Networks; Reggiani, A., Nijkamp, P., Eds.; Springer: Berlin/ Heidelberg, Germany, 2009; pp. 51–60. [Google Scholar]
- Pelz, P.F.; Friesen, J.; Hartig, J. Similar size of slums caused by a Turing instability of migration behavior. Phys. Rev. 2019, 99. [Google Scholar] [CrossRef] [Green Version]
- Barrington-Leigh, C.; Millard-Ball, A. A century of sprawl in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 8244–8249. [Google Scholar] [CrossRef] [Green Version]
- Urbieta, P.; Fernandez, E.; Ramos, L.; Méndez Martínez, G.; Bento, R. A land-cover based urban dispersion indicator suitable for highly dispersed, discontinuously artificialized territories: The case of continental Portugal. Land Use Policy 2019, 85, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Romano, B.; Zullo, F.; Fiorini, L.; Ciabò, S.; Marucci, A. Sprinkling: An Approach to Describe Urbanization Dynamics in Italy. Sustainability 2017, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Saganeiti, L.; Favale, A.; Pilogallo, A.; Scorza, F.; Murgante, B. Assessing Urban Fragmentation at Regional Scale Using Sprinkling Indexes. Sustainability 2018, 10, 3274. [Google Scholar] [CrossRef] [Green Version]
- Ewing, R.H. Characteristics, Causes, and Effects of Sprawl: A Literature Review. In Urban Ecology: An International Perspective on the Interaction Between Humans and Nature; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer: Boston, MA, USA, 2008; pp. 519–535. [Google Scholar]
- Kondo, S.; Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 2010, 329, 1616–1620. [Google Scholar] [CrossRef] [Green Version]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space—The Global Urban Footprint. Isprs J. Photogramm. Remote. Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Esch, T.; Bachofer, F.; Heldens, W.; Hirner, A.; Marconcini, M.; Palacios-Lopez, D.; Roth, A.; Üreyen, S.; Zeidler, J.; Dech, S.; et al. Where we live—A summary of the achievements and planned evolution of the global urban footprint. Remote Sens. 2018, 10, 895. [Google Scholar] [CrossRef] [Green Version]
- Esch, T.; Schenk, A.; Ullmann, T.; Thiel, M.; Roth, A.; Dech, S. Characterization of land cover types in TerraSAR-X images by combined analysis of speckle statistics and intensity information. IEEE Trans. Geosci. Remote. Sens. 2011, 49, 1911–1925. [Google Scholar] [CrossRef]
- Hudson, J.C. A Location Theory for Rural Settlement. Ann. Assoc. Am. Geogr. 1969, 59, 365–381. [Google Scholar] [CrossRef]
- Friesen, J.; Hartig, J.; Henn, K.; Pelz, P.F. Diffusion-driven demographics—Turing model as a concept for the emergence of sedentism. arXiv 2020, arXiv:2005.05107. [Google Scholar]
- Clark, J.P.; Evans, C.F. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Friesen, J.; Taubenböck, H.; Wurm, M.; Pelz, P.F. The similar size of slums. Habitat Int. 2018, 73, 79–88. [Google Scholar] [CrossRef]
- Friesen, J.; Taubenböck, H.; Wurm, M.; Pelz, P.F. Size distributions of slums across the globe using different data and classification methods. Eur. J. Remote Sens. 2019, 52, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Klotz, M.; Kemper, T.; Geiß, C.; Esch, T.; Taubenböck, H. How good is the map? A multi-scale cross-comparison framework for global settlement layers: Evidence from Central Europe. Remote Sens. Environ. 2016, 178, 191–212. [Google Scholar] [CrossRef] [Green Version]
- Siksna, A. The effects of block size and form in North American and Australian city centres. Urban Morphol. 1997, 1, 19–33. [Google Scholar]
- Goodall, D.W.; West, N.E. A comparison of techniques for assessing dispersion patterns. Vegetatio 1979, 40, 15–27. [Google Scholar] [CrossRef]
- Rudy, S.H.; Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Data-driven discovery of partial differential equations. Sci. Adv. 2017, 3, e1602614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Storey, B.D.; Braatz, R.D.; Bazant, M.Z. Learning the physics of pattern formation from images. Phys. Rev. Lett. 2020, 124, 060201. [Google Scholar] [CrossRef] [PubMed]
Data Set | in m | in m | Density in % | ||
---|---|---|---|---|---|
Argentina | 7119 | 4995 | 1.2045 | 70.7 | 0.59 |
China | 65,736 | 19,179 | 1.6694 | 138.5 | 11.4 |
Egypt | 22,744 | 13,512 | 1.6810 | 116.2 | 5.94 |
France | 20,771 | 7621 | 1.6670 | 87.3 | 2.15 |
Ghana | 9147 | 14,293 | 1.5846 | 119.6 | 1.91 |
India | 17,270 | 14,266 | 1.7161 | 119.4 | 3.63 |
USA | 6605 | 4471 | 1.2792 | 66.9 | 0.28 |
s.s. Length | 3 km | 5 km | 7 km | 10 km | 12 km | 15 km | |
---|---|---|---|---|---|---|---|
Class 1 | % of sample squares | 5.77 | 0.73 | 0.31 | 0.16 | 0.00 | 0.03 |
N | 6.79 | 7.89 | 7.00 | 6.75 | - | 10.00 | |
Class 2 | % of sample squares | 38.91 | 35.26 | 20.20 | 6.43 | 2.60 | 0.65 |
N | 5.41 | 6.51 | 9.44 | 16.09 | 20.08 | 15.34 |
CHINA Class 1 | CHINA Class 2 | EGYPT Class 3 | |
---|---|---|---|
s.s. Length | 5 km | 10 km | 12 km |
parameters | |||
N | 22 | 106 | 30 |
in % | 15.95 | 10.72 | 9.21 |
1.69 | 1.50 | 1.57 | |
z | 6.22 | 9.87 | 5.98 |
original GUF data | | | |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henn, K.; Friesen, J.; Hartig, J.; Pelz, P.F. Spatial Analysis of Settlement Structures to Identify Pattern Formation Mechanisms in Inter-Urban Systems. ISPRS Int. J. Geo-Inf. 2020, 9, 541. https://doi.org/10.3390/ijgi9090541
Henn K, Friesen J, Hartig J, Pelz PF. Spatial Analysis of Settlement Structures to Identify Pattern Formation Mechanisms in Inter-Urban Systems. ISPRS International Journal of Geo-Information. 2020; 9(9):541. https://doi.org/10.3390/ijgi9090541
Chicago/Turabian StyleHenn, Katharina, John Friesen, Jakob Hartig, and Peter F. Pelz. 2020. "Spatial Analysis of Settlement Structures to Identify Pattern Formation Mechanisms in Inter-Urban Systems" ISPRS International Journal of Geo-Information 9, no. 9: 541. https://doi.org/10.3390/ijgi9090541
APA StyleHenn, K., Friesen, J., Hartig, J., & Pelz, P. F. (2020). Spatial Analysis of Settlement Structures to Identify Pattern Formation Mechanisms in Inter-Urban Systems. ISPRS International Journal of Geo-Information, 9(9), 541. https://doi.org/10.3390/ijgi9090541