Kinetic Modeling of In Vivo K+ Distribution and Fluxes with Stable K+ Isotopes: Effects of Dietary K+ Restriction
Abstract
:1. Introduction
2. Results
2.1. Effects of 41K Infusion on Plasma 41K/39K Ratios
2.2. 3-C Modeling of Whole-Body K+ Distribution and Fluxes
2.3. K+ Uptake by Individual Tissues
2.4. Effects of the Duration of K+ Infusion on Model Identification
2.5. Effects of K+ Restriction on K+ Distribution and Fluxes
3. Discussion
4. Materials and Methods
4.1. Animals and Catheterization
4.2. 41K Infusion
4.3. Ion Chromatography and Isotope Ratio Mass-Spectrometry for 41K/39K Determination
4.4. Compartmental Analysis
4.5. Monte Carlo Simulation
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonough, A.A.; Fenton, R.A. Potassium homeostasis: Sensors, mediators, and targets. Pflugers Arch. 2022, 474, 853. [Google Scholar] [CrossRef]
- Kettritz, R.; Loffing, J. Potassium homeostasis—Physiology and pharmacology in a clinical context. Pharmacol. Ther. 2023, 249, 108489. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. Physiology and Pathophysiology of Potassium Homeostasis: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 682. [Google Scholar] [CrossRef] [PubMed]
- Jamison, R.L. Potassium recycling. Kidney Int. 1987, 31, 695. [Google Scholar] [CrossRef]
- Stokes, J.B. Potassium intoxication: Pathogenesis and treatment. In The Regulation of Potassium Balance; Seldin, D.W., Giebisch, G., Eds.; Raven: New York, NY, USA, 1989; pp. 157–174. [Google Scholar]
- Gennari, F.J.; Segal, A.S. Hyperkalemia: An adaptive response in chronic renal insufficiency. Kidney Int. 2002, 62, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bia, M.J.; DeFronzo, R.A. Extrarenal potassium homeostasis. Am. J. Physiol. 1981, 240, F257. [Google Scholar] [CrossRef]
- McKenna, M.J.; Gissel, H.; Clausen, T. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle. J. Physiol. 2003, 547, 567. [Google Scholar] [CrossRef]
- Lee, F.N.; Oh, G.; McDonough, A.A.; Youn, J.H. Evidence for gut factor in K+ homeostasis. Am. J. Physiol. Renal Physiol. 2007, 293, F541. [Google Scholar] [CrossRef] [PubMed]
- Preston, R.A.; Afshartous, D.; Rodco, R.; Alonso, A.B.; Garg, D. Evidence for a gastrointestinal-renal kaliuretic signaling axis in humans. Kidney Int. 2015, 88, 1383. [Google Scholar] [CrossRef]
- Polidoro, J.Z.; Luchi, W.M.; Seguro, A.C.; Malnic, G.; Girardi, A.C.C. Paracrine and endocrine regulation of renal K+ secretion. Am. J. Physiol. Renal Physiol. 2022, 322, F360–F377. [Google Scholar] [CrossRef]
- Rabinowitz, L.; Aizman, R.I. The central nervous system in potassium homeostasis. Front. Neuroendocrinol. 1993, 14, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Clegg, D.J. Extrarenal Effects of Aldosterone on Potassium Homeostasis. Kidney360 2022, 3, 561. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.H.; Oh, Y.T.; Gili, S.; McDonough, A.A.; Higgins, J. Estimating in vivo potassium distribution and fluxes with stable potassium isotopes. Am. J. Physiol. Cell Physiol. 2022, 322, C410. [Google Scholar] [CrossRef]
- Corsa, L.; Olney, J.M.; Steenburg, R.W.; Ball, M.R.; Moore, F.D. The measurement of exchangeable potassium in man by isotope dilution. J. Clin. Investig. 1950, 29, 1280. [Google Scholar] [CrossRef]
- Kilpatrick, R.; Renschler, H.; Munro, D.; Wilson, G. A comparison of the distribution of 42K and 86Rb in rabbit and man. J. Physiol. 1956, 133, 194. [Google Scholar] [CrossRef] [PubMed]
- Fowles, J.R.; Green, H.J.; Ouyang, J. Na+-K+-ATPase in rat skeletal muscle: Content, isoform, and activity characteristics. J. Appl. Physiol. 2004, 96, 316. [Google Scholar] [CrossRef] [PubMed]
- Cremades, A.; Sanchez-Capelo, A.; Monserrat, A.; Monserrat, F.; Penafiel, R. Effects of potassium deficiency on potassium, polyamines and amino acids in mouse tissues. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003, 134, 647. [Google Scholar] [CrossRef]
- Norgaard, A.; Kjeldsen, K.; Clausen, T. Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na-K transport in skeletal muscle. Nature 1981, 293, 739. [Google Scholar] [CrossRef]
- Russell, C.D. A Bayesian 3-compartment model for 99mTc-MAG3 clearance. J. Nucl. Med. 2003, 44, 357. [Google Scholar]
- Egbelowo, O.F. Nonstandard finite difference approach for solving 3-compartment pharmacokinetic models. Int. J. Numer. Method. Biomed. Eng. 2018, 34, e3114. [Google Scholar] [CrossRef]
- Yang, J.; Oh, Y.T.; Wan, D.; Watanabe, R.M.; Hammock, B.D.; Youn, J.H. Postprandial effect to decrease soluble epoxide hydrolase activity: Roles of insulin and gut microbiota. J. Nutr. Biochem. 2017, 49, 8. [Google Scholar] [CrossRef]
- Morgan, L.E.; Santiago Ramos, D.P.; Davidheiser-Kroll, B.; Faithfull, J.; Lloyd, N.S.; Ellam, R.M.; Higgins, J.A. High precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability in δ41K. J. Anal. At. Spectrom. 2018, 33, 175. [Google Scholar] [CrossRef]
- Wang, K.; Jacobsen, S.B. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts. Geochim. Cosmochim. Acta 2016, 178, 223. [Google Scholar] [CrossRef]
- Chen, H.; Tian, Z.; Tuller-Ross, B.; Korotev Randy, L.; Wang, K. High-precision potassium isotopic analysis by MC-ICP-MS: An inter-laboratory comparison and refined K atomic weight. J. Anal. At. Spectrom. 2019, 34, 160. [Google Scholar] [CrossRef]
Control | K+-Deficient Diet | % Change | |
---|---|---|---|
k01 | 0.0043 ± 0.0024 | 0.0003 ± 0.0003 *** | ↓95% |
k21 | 0.317 ± 0.166 | 0.298 ± 0.094 | ↓6% |
k12 | 0.041 ± 0.014 | 0.026 ± 0.005 * | ↓37% |
k31 | 0.220 ± 0.100 | 0.199 ± 0.075 | ↓9% |
k13 | 0.0058 ± 0.0020 | 0.0038 ± 0.0007 * | ↓34% |
KECF | 0.49 ± 0.19 | 0.31 ± 0.14 * | ↓37% |
KICF2 (fast) | 3.70 ± 2.22 | 3.33 ± 0.98 | ↓10% |
KICF3 (slow) | 16.9 ± 1.6 | 14.4 ± 1.5 ** | ↓15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youn, J.H.; Gili, S.; Oh, Y.; McDonough, A.A.; Higgins, J. Kinetic Modeling of In Vivo K+ Distribution and Fluxes with Stable K+ Isotopes: Effects of Dietary K+ Restriction. Int. J. Mol. Sci. 2024, 25, 9664. https://doi.org/10.3390/ijms25179664
Youn JH, Gili S, Oh Y, McDonough AA, Higgins J. Kinetic Modeling of In Vivo K+ Distribution and Fluxes with Stable K+ Isotopes: Effects of Dietary K+ Restriction. International Journal of Molecular Sciences. 2024; 25(17):9664. https://doi.org/10.3390/ijms25179664
Chicago/Turabian StyleYoun, Jang H., Stefania Gili, Youngtaek Oh, Alicia A. McDonough, and John Higgins. 2024. "Kinetic Modeling of In Vivo K+ Distribution and Fluxes with Stable K+ Isotopes: Effects of Dietary K+ Restriction" International Journal of Molecular Sciences 25, no. 17: 9664. https://doi.org/10.3390/ijms25179664
APA StyleYoun, J. H., Gili, S., Oh, Y., McDonough, A. A., & Higgins, J. (2024). Kinetic Modeling of In Vivo K+ Distribution and Fluxes with Stable K+ Isotopes: Effects of Dietary K+ Restriction. International Journal of Molecular Sciences, 25(17), 9664. https://doi.org/10.3390/ijms25179664