ctdsp2 Knockout Induces Zebrafish Craniofacial Dysplasia via p53 Signaling Activation
Abstract
:1. Introduction
2. Results
2.1. Novel Variant Identification and Molecular Analysis of CTDSP2
2.2. Homology and Expression Profile of CTDSP2 in Zebrafish
2.3. ctdsp2 Knockout Induces Severe Pharyngeal Malformation
2.4. Inbred Homozygous Zebrafish Demonstrate Similar Pharyngeal Malformations
2.5. ctdsp2−/− Embryos Exhibit Craniofacial Malformations, Pharyngeal Arch Cartilage Dysplasia, and Chondrocyte Disorganization
2.6. ctdsp2 Knockout Influences Apoptosis and Proliferation of NCCs in the Pharyngeal Arches and Chondrocyte Differentiation
2.7. RNA-Seq Analysis Identifies Differentially Expressed Genes and Associated Signaling Pathways
2.8. tp53 Knockout Alleviates Pharyngeal Arch Cartilage Dysplasia in ctdsp2−/− Embryos
3. Discussion
4. Materials and Methods
4.1. Zebrafish and Embryos
4.2. Zebrafish Target Gene Knockout
4.3. Bioinformatics Prediction of ctdsp2 Expression Profile in Zebrafish
4.4. Whole-Mount In Situ Hybridization
4.5. Cartilage Staining
4.6. Immunofluorescence
4.7. RNA Sequencing
4.8. Quantitative Real-Time PCR Validation
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Luo, S.; Sun, H.; Bian, Q.; Liu, Z.; Wang, X. The etiology, clinical features, and treatment options of hemifacial microsomia. Oral Dis. 2023, 29, 2449–2462. [Google Scholar] [CrossRef]
- Kuu-Karkku, L.; Suominen, A.; Svedström-Oristo, A.L. Craniofacial microsomia–More than a structural malformation. Orthod. Craniofacial Res. 2023, 26, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, F.; Liu, F.; Aung, Z.M.; Chen, W.; Han, W.; Yang, X.; Zhang, Y.; Chai, G.; Zhang, R. Whole-exome sequencing for monozygotic twins discordant for hemifacial microsomia. J. Cranio-Maxillofac. Surg. 2018, 46, 802–807. [Google Scholar] [CrossRef]
- Lopez, E.; Berenguer, M.; Tingaud-Sequeira, A.; Marlin, S.; Toutain, A.; Denoyelle, F.; Picard, A.; Charron, S.; Mathieu, G.; de Belvalet, H.; et al. Mutations in MYT1, encoding the myelin transcription factor 1, are a rare cause of OAVS. J. Med. Genet. 2016, 53, 752–760. [Google Scholar] [CrossRef]
- Berenguer, M.; Tingaud-Sequeira, A.; Colovati, M.; Melaragno, M.I.; Bragagnolo, S.; Perez, A.B.A.; Arveiler, B.; Lacombe, D.; Rooryck, C. A novel de novo mutation in MYT1, the unique OAVS gene identified so far. Eur. J. Hum. Genet. 2017, 25, 1083–1086. [Google Scholar] [CrossRef] [PubMed]
- Luquetti, D.V.; Heike, C.L.; Zarante, I.; Timms, A.E.; Gustafson, J.; Pachajoa, H.; Porras-Hurtado, G.L.; Ayala-Ramirez, P.; Duenas-Roque, M.M.; Jimenez, N.; et al. MYT1 role in the microtia-craniofacial microsomia spectrum. Mol. Genet. Genom. Med. 2020, 8, e1401. [Google Scholar] [CrossRef]
- Zamariolli, M.; Burssed, B.; Moysés-Oliveira, M.; Colovati, M.; Bellucco, F.T.D.S.; Dos Santos, L.C.; Alvarez Perez, A.B.; Bragagnolo, S.; Melaragno, M.I. Novel MYT1 variants expose the complexity of oculo-auriculo-vertebral spectrum genetic mechanisms. Am. J. Med. Genet. A 2021, 185, 2056–2064. [Google Scholar] [CrossRef] [PubMed]
- Timberlake, A.T.; Griffin, C.; Heike, C.L.; Hing, A.V.; Cunningham, M.L.; Chitayat, D.; Davis, M.R.; Doust, S.J.; Drake, A.F.; Duenas-Roque, M.M.; et al. Haploinsufficiency of SF3B2 causes craniofacial microsomia. Nat. Commun. 2021, 12, 4680. [Google Scholar] [CrossRef]
- Mao, K.; Borel, C.; Ansar, M.; Jolly, A.; Makrythanasis, P.; Froehlich, C.; Iwaszkiewicz, J.; Wang, B.; Xu, X.; Li, Q.; et al. FOXI3 pathogenic variants cause one form of craniofacial microsomia. Nat. Commun. 2023, 14, 2026. [Google Scholar] [CrossRef] [PubMed]
- Quiat, D.; Timberlake, A.T.; Curran, J.J.; Cunningham, M.L.; McDonough, B.; Artunduaga, M.A.; DePalma, S.R.; Duenas-Roque, M.M.; Gorham, J.M.; Gustafson, J.A.; et al. Damaging variants in FOXI3 cause microtia and craniofacial microsomia. Genet. Med. 2023, 25, 143–150. [Google Scholar] [CrossRef]
- Tingaud-Sequeira, A.; Trimouille, A.; Marlin, S.; Lopez, E.; Berenguer, M.; Gherbi, S.; Arveiler, B.; Lacombe, D.; Rooryck, C. Functional and genetic analyses of ZYG11B provide evidences for its involvement in OAVS. Mol. Genet. Genom. Med. 2020, 8, e1375. [Google Scholar] [CrossRef] [PubMed]
- Tingaud-Sequeira, A.; Trimouille, A.; Salaria, M.; Stapleton, R.; Claverol, S.; Plaisant, C.; Bonneu, M.; Lopez, E.; Arveiler, B.; Lacombe, D.; et al. A recurrent missense variant in EYA3 gene is associated with oculo-auriculo-vertebral spectrum. Hum. Genet. 2021, 140, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Wang, X.; Fan, C.; Yan, J.; Zhu, J.; Cai, T. Hemifacial microsomia is linked to a rare homozygous variant V162I in FRK and validated in zebrafish. Oral Dis. 2023, 29, 3472–3480. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Xia, X.; Fan, Y.; Zhang, B.; Chen, X. Functional and Genetic Analyses Unveil the Implication of CDC27 in Hemifacial Microsomia. Int. J. Mol. Sci. 2024, 25, 4707. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. CTDSP2 CTD Small Phosphatase 2 [Homo Sapiens (Human)]-Gene. Available online: https://www.ncbi.nlm.nih.gov/gtr/genes/10106/ (accessed on 24 January 2025).
- Wang, Q.; Kurosaka, H.; Kikuchi, M.; Nakaya, A.; Trainor, P.A.; Yamashiro, T. Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate. Dis. Models Mech. 2019, 12, dmm040279. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Y.; Shen, G.; Dai, J. Etiology and Pathogenesis of Hemifacial Microsomia. J. Dent. Res. 2018, 97, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Deng, C.; Li, Y.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012, 8, 272–288. [Google Scholar] [CrossRef] [PubMed]
- Yumoto, K.; Thomas, P.S.; Lane, J.; Matsuzaki, K.; Inagaki, M.; Ninomiya-Tsuji, J.; Scott, G.J.; Ray, M.K.; Ishii, M.; Maxson, R.; et al. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells. J. Biol. Chem. 2013, 288, 13467–13480. [Google Scholar] [CrossRef]
- Dash, S.; Trainor, P.A. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone 2020, 137, 115409. [Google Scholar] [CrossRef] [PubMed]
- Becerra, J.; Andrades, J.A.; Guerado, E.; Zamora-Navas, P.; López-Puertas, J.M.; Reddi, A.H. Articular cartilage: Structure and regeneration. Tissue Eng. Part B Rev. 2010, 16, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Zhang, F.; Gu, W.; Zhang, B.; Chen, X. FBLN2 is associated with Goldenhar syndrome and is essential for cranial neural crest cell development. Ann. N. Y. Acad. Sci. 2024, 1537, 113–128. [Google Scholar] [CrossRef]
- Sun, L.; Ping, L.; Fan, X.; Fan, Y.; Zhang, B.; Chen, X. Amer1 Regulates Zebrafish Craniofacial Development by Interacting with the Wnt/β-Catenin Pathway. Int. J. Mol. Sci. 2024, 25, 734. [Google Scholar] [CrossRef] [PubMed]
- Welsh, I.C.; Hart, J.; Brown, J.M.; Hansen, K.; Rocha Marques, M.; Aho, R.J.; Grishina, I.; Hurtado, R.; Herzlinger, D.; Ferretti, E.; et al. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface. J. Anat. 2018, 233, 222–242. [Google Scholar] [CrossRef]
- Everson, J.L.; Fink, D.M.; Yoon, J.W.; Leslie, E.J.; Kietzman, H.W.; Ansen-Wilson, L.J.; Chung, H.M.; Walterhouse, D.O.; Marazita, M.L.; Lipinski, R.J. Sonic hedgehog regulation of Foxf2 promotes cranial neural crest mesenchyme proliferation and is disrupted in cleft lip morphogenesis. Development 2017, 144, 2082–2091. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Zhang, F.; Ping, L.; Wang, Y.; Zhang, B.; Wang, J.; Chen, X. vwa1 Knockout in Zebrafish Causes Abnormal Craniofacial Chondrogenesis by Regulating FGF Pathway. Genes 2023, 14, 838. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.; Geneviève, D.; Ostertag, A.; Marlin, S.; Lacombe, D.; Martin-Coignard, D.; Coubes, C.; David, A.; Lyonnet, S.; Vilain, C.; et al. Treacher Collins syndrome: A clinical and molecular study based on a large series of patients. Genet. Med. 2016, 18, 49–56. [Google Scholar] [CrossRef]
- Dauwerse, J.G.; Dixon, J.; Seland, S.; Ruivenkamp, C.A.L.; van Haeringen, A.; Hoefsloot, L.H.; Peters, D.J.M.; Boers, A.C.-D.; Daumer-Haas, C.; Maiwald, R.; et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat. Genet. 2011, 43, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Lau, M.C.C.; Kwong, E.M.L.; Lai, K.P.; Li, J.-W.; Ho, J.C.H.; Chan, T.-F.; Wong, C.K.C.; Jiang, Y.-J.; Tse, W.K.F. Pathogenesis of POLR1C-dependent Type 3 Treacher Collins Syndrome revealed by a zebrafish model. Biochim. Biophys. Acta 2016, 1862, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, Z.; Tavana, O.; Gu, W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024, 42, 946–967. [Google Scholar] [CrossRef]
- Cleary, M.A.; van Osch, G.J.V.M.; Brama, P.A.; Hellingman, C.A.; Narcisi, R. FGF, TGFβ and Wnt crosstalk: Embryonic to in vitro cartilage development from mesenchymal stem cells. J. Tissue Eng. Regen. Med. 2015, 9, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.S.; Ovchinnikov, D.A.; Yoshii, I.; Mishina, Y.; Behringer, R.R.; Lyons, K.M. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 5062–5067. [Google Scholar] [CrossRef]
- Iwata, J.-I.; Hacia, J.G.; Suzuki, A.; Sanchez-Lara, P.A.; Urata, M.; Chai, Y. Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice. J. Clin. Investig. 2012, 122, 873–885. [Google Scholar] [CrossRef]
- Li, L.; Mao, A.; Wang, P.; Ning, G.; Cao, Y.; Wang, Q. Endodermal pouch-expressed dmrt2b is important for pharyngeal cartilage formation. Biol. Open 2018, 7, bio035444. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef]
- Wu, R.S.; Lam, I.I.; Clay, H.; Duong, D.N.; Deo, R.C.; Coughlin, S.R. A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. Dev. Cell 2018, 46, 112–125.e4. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ping, L.; Luan, X.; Chen, Y.; Fan, X.; Li, L.; Liu, Y.; Wang, P.; Zhang, S.; Zhang, B.; et al. A Mutation in VWA1, Encoding von Willebrand Factor A Domain-Containing Protein 1, Is Associated With Hemifacial Microsomia. Front. Cell Dev. Biol. 2020, 8, 571004. [Google Scholar] [CrossRef]
- Li, X.; Ge, G.; Song, G.; Li, Q.; Cui, Z. Effects of Nutritionally Induced Obesity on Metabolic Pathways of Zebrafish. Int. J. Mol. Sci. 2023, 24, 1850. [Google Scholar] [CrossRef]
- Ge, G.; Long, Y.; Song, G.; Li, Q.; Cui, Z.; Yan, H. Transcriptomic Profiling Revealed Signaling Pathways Associated with the Spawning of Female Zebrafish under Cold Stress. Int. J. Mol. Sci. 2022, 23, 7494. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Rodriguez, G.; Han, X.; Janečková, E.; Kahng, S.; Song, B.; Chai, Y. Regulatory Mechanisms of Soft Palate Development and Malformations. J. Dent. Res. 2019, 98, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X.; Song, W.; Zhang, F.; Fan, Y.; Zhang, B.; Chen, X. ctdsp2 Knockout Induces Zebrafish Craniofacial Dysplasia via p53 Signaling Activation. Int. J. Mol. Sci. 2025, 26, 1297. https://doi.org/10.3390/ijms26031297
Xia X, Song W, Zhang F, Fan Y, Zhang B, Chen X. ctdsp2 Knockout Induces Zebrafish Craniofacial Dysplasia via p53 Signaling Activation. International Journal of Molecular Sciences. 2025; 26(3):1297. https://doi.org/10.3390/ijms26031297
Chicago/Turabian StyleXia, Xin, Wenjie Song, Fuyu Zhang, Yue Fan, Bo Zhang, and Xiaowei Chen. 2025. "ctdsp2 Knockout Induces Zebrafish Craniofacial Dysplasia via p53 Signaling Activation" International Journal of Molecular Sciences 26, no. 3: 1297. https://doi.org/10.3390/ijms26031297
APA StyleXia, X., Song, W., Zhang, F., Fan, Y., Zhang, B., & Chen, X. (2025). ctdsp2 Knockout Induces Zebrafish Craniofacial Dysplasia via p53 Signaling Activation. International Journal of Molecular Sciences, 26(3), 1297. https://doi.org/10.3390/ijms26031297