Design and Usability Study of a Point of Care mHealth App for Early Dry Eye Screening and Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participant Selection and Group Allocation
2.2. Video Recording Conditions and Digital Data Storage
2.3. Computer Programming Tools and Software Development Package
2.4. EAR-Based Algorithm Development for Blink Count
2.5. Creation of an Eye Healthiness Score for Monitoring Eye Conditions
2.6. Statistical Analysis
3. Results
3.1. EyeScore App Interface and Questionnaire
3.2. Limitations of a Fixed Value EAR Approach
3.3. Development of a Dynamic EAR Approach with Two EAR Thresholds
3.4. Accurate Blink and Partial Blink Results Obtained from the Dynamic EAR Approach
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Haupt, C.; Huber, A.B. How axons see their way—Axonal guidance in the visual system. Front. Biosci. 2008, 13, 3136–3149. [Google Scholar] [CrossRef] [PubMed]
- Pflugfelder, S.C.; Stern, M.E. Biological functions of tear film. Exp. Eye Res. 2020, 197, 108115. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.D.; Lane, K.J.; Ousler, G.W., 3rd; Angjeli, E.; Smith, L.M.; Abelson, M.B. Blink: Characteristics, Controls, and Relation to Dry Eyes. Curr. Eye Res. 2018, 43, 52–66. [Google Scholar] [CrossRef]
- McMonnies, C.W. The clinical and experimental significance of blinking behavior. J. Optom. 2020, 13, 74–80. [Google Scholar] [CrossRef]
- Tsubota, K.; Hata, S.; Okusawa, Y.; Egami, F.; Ohtsuki, T.; Nakamori, K. Quantivideo graphicsgraphic analysis of blinking in normal subjects and patients with dry eye. Arch. Ophthalmol. 1996, 114, 715–720. [Google Scholar] [CrossRef]
- Chidi-Egboka, N.C.; Jalbert, I.; Wagner, P.; Golebiowski, B. Blinking and normal ocular surface in school-aged children and the effects of age and screen time. Br. J. Ophthalmol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef] [PubMed]
- Papas, E.B. The global prevalence of dry eye disease: A Bayesian view. Ophthalmic Physiol. Opt. 2021, 41, 1254–1266. [Google Scholar] [CrossRef]
- Farrand, K.F.; Fridman, M.; Stillman, I.Ö.; Schaumberg, D.A. Prevalence of Diagnosed Dry Eye Disease in the United States Among Adults Aged 18 Years and Older. Am. J. Ophthalmol. 2017, 182, 90–98. [Google Scholar] [CrossRef]
- Messmer, E.M. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch. Arztebl. Int. 2015, 112, 71–78. [Google Scholar] [CrossRef]
- NIH/NEI. Dry Eye. 2023. Available online: https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/dry-eye (accessed on 11 September 2023).
- Ousler, G.W., 3rd; Abelson, M.B.; Johnston, P.R.; Rodriguez, J.; Lane, K.; Smith, L.M. Blink patterns and lid-contact times in dry-eye and normal subjects. Clin. Ophthalmol. 2014, 8, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liang, Q.; Su, G.; Wang, N.; Baudouin, C.; Labbé, A. Spontaneous Eye Blink Patterns in Dry Eye: Clinical Correlations. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5149–5156. [Google Scholar] [CrossRef] [PubMed]
- Johnston, P.R.; Rodriguez, J.; Lane, K.J.; Ousler, G.; Abelson, M.B. The interblink interval in normal and dry eye subjects. Clin. Ophthalmol. 2013, 7, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Inomata, T.; Iwagami, M.; Hiratsuka, Y.; Fujimoto, K.; Okumura, Y.; Shiang, T.; Murakami, A. Maximum blink interval is associated with tear film breakup time: A new simple, screening test for dry eye disease. Sci. Rep. 2018, 8, 13443. [Google Scholar] [CrossRef]
- Inomata, T.; Sung, J.; Nakamura, M.; Iwagami, M.; Okumura, Y.; Iwata, N.; Midorikawa-Inomata, A.; Fujimoto, K.; Eguchi, A.; Nagino, K.; et al. Using Medical Big Data to Develop Personalized Medicine for Dry Eye Disease. Cornea 2020, 39 (Suppl. 1), S39–S46. [Google Scholar] [CrossRef]
- Inomata, T.; Sung, J. Changing Medical Paradigm on Inflammatory Eye Disease: Technology and Its Implications for P4 Medicine. J. Clin. Med. 2022, 11, 2964. [Google Scholar] [CrossRef]
- Okumura, Y.; Inomata, T.; Midorikawa-Inomata, A.; Sung, J.; Fujio, K.; Akasaki, Y.; Nakamura, M.; Iwagami, M.; Fujimoto, K.; Eguchi, A.; et al. DryEyeRhythm: A reliable and valid smartphone application for the diagnosis assistance of dry eye. Ocul. Surf. 2022, 25, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Hirosawa, K.; Inomata, T.; Sung, J.; Nakamura, M.; Okumura, Y.; Midorikawa-Inomata, A.; Miura, M.; Fujio, K.; Akasaki, Y.; Fujimoto, K.; et al. Diagnostic ability of maximum blink interval together with the Japanese version of Ocular Surface Disease Index score for dry eye disease. Sci. Rep. 2020, 10, 18106. [Google Scholar] [CrossRef]
- Fujio, K.; Nagino, K.; Huang, T.; Sung, J.; Akasaki, Y.; Okumura, Y.; Midorikawa-Inomata, A.; Fujimoto, K.; Eguchi, A.; Miura, M.; et al. Clinical utility of maximum blink interval the measured by smartphone application DryEyeRhythm to support dry eye disease diagnosis. Sci. Rep. 2023, 13, 13583. [Google Scholar] [CrossRef]
- Nagino, K.; Okumura, Y.; Yamaguchi, M.; Sung, J.; Nagao, M.; Fujio, K.; Akasaki, Y.; Huang, T.; Hirosawa, K.; Iwagami, M.; et al. Diagnostic Ability of a Smartphone App for Dry Eye Disease: Protocol for a Multicenter, Open-Label, Prospective, and Cross-sectional Study. JMIR Res. Protoc. 2023, 12, e45218. [Google Scholar] [CrossRef]
- Soukupova, T.; Cech, J. Real-Time Eye Blink Detection using Facial Landmarks. In Proceedings of the 21st Computer Vision Winter Workshop, Rimske Toplice, Slovenia, 3–5 February 2016. [Google Scholar]
- Rosebrock, A. Eye Blink Detection with OpenCV, Python, and Dlib. Blog in Pyimagesearch. 2017. Available online: https://pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-python-dlib/ (accessed on 11 September 2023).
- Hassan, M. Eye blink CountPythonng OpenCV Pythan/Computer Vision. 2022. Available online: https://www.youtube.com/watch?v=-TVUwH1PgBs (accessed on 11 September 2023).
- Dlib: Face Landmark Detection. Available online: http://dlib.net/face_landmark_detection.py.html (accessed on 11 September 2023).
- Hakim, F.E.; Farooq, A.V. Dry Eye Disease: An Update in 2022. JAMA 2022, 327, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T. Contact Lens-Associated Dry Eye Disease: Recent Advances Worldwide and in Japan. Investig. Ophthalmol. Vis. Sci. 2018, 59, DES102–DES108. [Google Scholar] [CrossRef]
- Qian, L.; Wei, W. Identified risk factors for dry eye syndrome: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0271267. [Google Scholar] [CrossRef]
- Schneider, A.; Hommel, G.; Blettner, M. Linear regression analysis: Part 14 of a series on evaluation of scientific publications. Dtsch. Arztebl. Int. 2010, 107, 776–782. [Google Scholar] [PubMed]
- Kojima, T.; Dogru, M.; Kawashima, M.; Nakamura, S.; Tsubota, K. Advances in the diagnosis and treatment of dry eye. Prog. Retin. Eye Res. 2020, 78, 100842. [Google Scholar] [CrossRef] [PubMed]
- Thulasi, P.; Djalilian, A.R. Update in Current Diagnostics and Therapeutics of Dry Eye Disease. Ophthalmology 2017, 124, S27–S33. [Google Scholar] [CrossRef] [PubMed]
- Talens-Estarelles, C.; García-Marqués, J.V.; Cervino, A.; García-Lázaro, S. Use of digital displays and ocular surface alterations: A review. Ocul. Surf. 2021, 19, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Neuta, I.; Neumann, F.; Brightmeyer, J.; Ba Tis, T.; Madaboosi, N.; Wei, Q.; Ozcan, A.; Nilsson, M. Smartphone-based clinical diagnostics: Towards democratization of evidence-based health care. J. Intern. Med. 2019, 285, 19–39. [Google Scholar] [CrossRef]
- Babenko, B.; Mitani, A.; Traynis, I.; Kitade, N.; Singh, P.; Maa, A.Y.; Cuadros, J.; Corrado, G.S.; Peng, L.; Webster, D.R.; et al. Detection of signs of disease in external photographs of the eyes via deep learning. Nat. Biomed. Eng. 2022, 6, 1370–1383. [Google Scholar] [CrossRef]
- Chase, C.; Elsawy, A.; Eleiwa, T.; Ozcan, E.; Tolba, M.; Abou Shousha, M. Comparison of Autonomous AS-OCT Deep Learning Algorithm and Clinical Dry Eye Tests in Diagnosis of Dry Eye Disease. Clin. Ophthalmol. 2021, 15, 4281–4289. [Google Scholar] [CrossRef]
- Storås, A.M.; Strümke, I.; Riegler, M.A.; Grauslund, J.; Hammer, H.L.; Yazidi, A.; Halvorsen PGundersen, K.G.; Utheim, T.P.; Jackson, C.J. Artificial intelligence in dry eye disease. Ocul. Surf. 2022, 23, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Inomata, T.; Nakamura, M.; Sung, J.; Midorikawa-Inomata, A.; Iwagami, M.; Fujio, K.; Akasaki, Y.; Okumura, Y.; Fujimoto, K.; Eguchi, A.; et al. Smartphone-based digital phenotyping for dry eye toward P4 medicine: A crowdsourced cross-sectional study. NPJ Digit. Med. 2021, 4, 171. [Google Scholar] [CrossRef] [PubMed]
Group | Enrollee No. | Gender | Age | Occupation | Electronics Use † | Regular Contact Lens Wearing | Preexisting Eye Symptoms or Diagnosis/Treatment ‡ |
---|---|---|---|---|---|---|---|
Normal | 1 | M | 58 | Researcher | +++ | No | Normal |
2 | F | 20 | Student | +++ | Yes | Normal | |
3 | F | 21 | Student | +++ | No | Normal | |
4 | F | 22 | Student | +++ | No | Normal | |
5 | F | 53 | Homemaker | + | No | Normal | |
6 | F | 47 | Office worker | +++ | Yes | Normal | |
7 | F | 56 | Homemaker | + | Yes | Normal | |
8 | F | 80 | Homemaker | + | No | Normal | |
9 | M | 65 | Cook | + | No | Normal | |
10 | M | 29 | Engineer | ++++ | No | Normal | |
DED | DED 1 | F | 48 | Engineer | ++++ | Yes | Confirmed DED |
DED 2 | M | 80 | Clinician | ++ | No | Confirmed DED/under treatment | |
DED 3 | F | 83 | Homemaker | + | No | Confirmed DED/under treatment | |
DED4 | F | 21 | Student | +++ | Yes | Confirmed DED | |
DED 5 | M | 60 | Financial planner | +++ | Yes | Confirmed DED | |
DED 6 | F | 51 | Researcher | +++ | Yes | Confirmed DED | |
DED 7 | F | 28 | Clinician | ++ | Yes | Confirmed DED/under treatment | |
DED 8 | F | 44 | Homemaker | + | Yes | Confirmed DED/under treatment | |
DED 9 | M | 60 | Engineer | ++++ | No | Confirmed DED | |
DED 10 | M | 19 | Game Designer | ++++ | Yes | Confirmed DED |
Factor | Point * | References |
---|---|---|
Blink rate > 30 per min | 3 | [5] |
Partial blink > 5 per min | 3 | [12,13] |
Dry and gritty feeling | 2 | [26] |
Women over 50 years old | 1 | [26] |
Regular contact lens wearing | 1 | [27] |
Total | 10 | |
Normal: 0–3; Mild DED: 4–6; DED: 7–10; Severe DED (will need a doctor’s visit) |
Group | Enrollee No. | EyeScore Data with Fixed EAR | Manual | Partial Blink | Note |
---|---|---|---|---|---|
Controls | 1 | 10 | 10 | yes | Correct full blink count/no partial blink count |
2 | 29 | 29 | No | Correct full blink count | |
3A (no mask) | 29 | 30 | Yes | Incorrect full blink count/no partial blink count | |
3B (with mask) | 20 | 30 | Yes | Incorrect full blink count/no partial blink count | |
4 | 15 | 15 | Yes | Correct full blink count/no partial blink count | |
5 | 20 | 25 | Yes | Incorrect full blink count/no partial blink count | |
6A (no mask) | 22 | 29 | Yes | Incorrect full blink count/no partial blink count | |
6B (with mask) | 17 | 29 | Yes | Incorrect full blink count/no partial blink count | |
DED | DED1 | 29 | 39 | Yes | Incorrect full blink count/no partial blink count |
DED2 | 26 | 16 | Yes | Incorrect full blink count/no partial blink count | |
DED3 | 28 | 35 | Yes | Incorrect full blink count/no partial blink count | |
DED4 | 25 | 36 | Yes | Incorrect full blink count/no partial blink count |
Group | Enrollee Number | Age | Gender | Preexisting Diagnosis/ Treatment | EyeScore Diagnosis | Eye Score | Full Blink Rate | Partial Blink Rate | Video Time (sec) | Open/Close Ratio (%) | Post-EyeScore Confirmation |
---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1 | 58 | M | Normal | Normal | 0 | 10 | 1 | 65 | 42.3 | |
2 | 20 | F | Normal | Normal | 1 | 29 | 0 | 63 | 7.8 | ||
3 | 21 | F | Normal | Normal | 0 | 25 | 5 | 61 | 9.1 | ||
4 | 22 | F | Normal | Normal | 0 | 15 | 1 | 61 | 14.3 | ||
5 | 53 | F | Normal | Mild DED | 4 | 23 | 8 | 62 | 3.7 | DED Confirmed | |
6 | 47 | F | Normal | Mild DED | 6 | 21 | 6 | 62 | 2.4 | DED Confirmed | |
7 | 56 | F | Normal | Mild DED | 5 | 31 | 3 | 60 | 7.3 | DED Confirmed | |
8 | 80 | F | Normal | Normal | 3 | 22 | 1 | 60 | 4.0 | ||
9 | 65 | M | Normal | Normal | 2 | 28 | 0 | 62 | 7.9 | ||
10 | 29 | M | Normal | Normal | 0 | 18 | 0 | 58 | 18.4 | ||
Average | 45 | 7F; 3M | Average | 2.1 | 22.2 | 2.5 | 61.4 | 11.7 | |||
DED | DED1 | 48 | F | Mild DED | Mild DED | 4 | 39 | 1 | 62 | 2.6 | DED Confirmed |
DED2 | 80 | M | DED/Treated | Mild DED | 5 | 16 | 14 | 61 | 60 | DED Confirmed | |
DED3 | 83 | F | DED/Treated | Mild DED | 6 | 35 | 3 | 62 | 6.8 | DED Confirmed | |
DED4 | 21 | F | DED | DED | 7 | 36 | 8 | 61 | 3.4 | DED Confirmed | |
DED5 | 60 | M | DED | DED | 7 | 40 | 14 | 61 | 19.3 | DED Confirmed | |
DED6 | 51 | F | DED | DED | 7 | 64 | 0 | 61 | 3.0 | DED Confirmed | |
DED7 | 28 | F | DED/Treated | Mild DED | 6 | 13 | 6 | 61 | 9.9 | DED Confirmed | |
DED8 | 44 | F | DED/Treated | Mild DED | 4 | 23 | 1 | 61 | 9.8 | DED Confirmed | |
DED9 | 60 | M | Mild DED | Mild DED | 6 | 55 | 0 | 61 | 3.9 | DED Confirmed | |
DED10 | 19 | M | DED | DED | 9 | 53 | 11 | 61 | 7.2 | DED Confirmed | |
Average | 49 | 6F; 4M | Average | 6.1 | 37.4 | 5.8 | 61.2 | 12.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Echegoyen, J. Design and Usability Study of a Point of Care mHealth App for Early Dry Eye Screening and Detection. J. Clin. Med. 2023, 12, 6479. https://doi.org/10.3390/jcm12206479
Zhang S, Echegoyen J. Design and Usability Study of a Point of Care mHealth App for Early Dry Eye Screening and Detection. Journal of Clinical Medicine. 2023; 12(20):6479. https://doi.org/10.3390/jcm12206479
Chicago/Turabian StyleZhang, Sydney, and Julio Echegoyen. 2023. "Design and Usability Study of a Point of Care mHealth App for Early Dry Eye Screening and Detection" Journal of Clinical Medicine 12, no. 20: 6479. https://doi.org/10.3390/jcm12206479
APA StyleZhang, S., & Echegoyen, J. (2023). Design and Usability Study of a Point of Care mHealth App for Early Dry Eye Screening and Detection. Journal of Clinical Medicine, 12(20), 6479. https://doi.org/10.3390/jcm12206479