Enhancing Welding Productivity and Mitigation of Distortion in Dissimilar Welding of Ferritic-Martensitic Steel and Austenitic Stainless Steel Using Robotic A-TIG Welding Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Selection
2.2. Fabrication of Welded Joints
2.2.1. A-TIG Welding of P91/304L Steel Using an AlCoCrFeNi2.1 EHEA Interlayer
2.2.2. Multipass-TIG Welding of P91/304L Steel Using an ErNiCr-3 Filler Rod
2.3. Qualification of the Welded Joints
2.4. Distortion Measurement
3. Results
3.1. Visual Inspection
3.2. Macrostructure
3.3. X-Ray Radiography
3.4. Angular Distortion
3.5. Economic Assessment of the Fabricated Joints
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Viswanathan, R.; Coleman, K.; Rao, U. Materials for ultra-supercritical coal-fired power plant boilers. Int. J. Press. Vessel. Pip. 2006, 83, 778–783. [Google Scholar] [CrossRef]
- Akhtar, M.; Khajuria, A.; Kumar, V.S.; Gupta, R.K.; Albert, S.K. Evolution of microstructure during welding simulation of boron modified P91 steel. Phys. Met. Metallo. 2019, 120, 672–685. [Google Scholar] [CrossRef]
- Sireesha, M.; Sundaresan, S.; Albert, S.K. Microstructure and mechanical properties of weld fusion zones in modified 9Cr-1Mo steel. J. Mater. Eng. Perform. 2001, 10, 320–330. [Google Scholar] [CrossRef]
- Pandey, C.; Mahapatra, M.M.; Kumar, P.; Saini, N. Some studies on P91 steel and their weldments. J. Alloys Compd. 2018, 743, 332–364. [Google Scholar] [CrossRef]
- David, S.A.; Siefert, J.A.; Feng, Z. Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. Sci. Technol. Weld. Join. 2013, 18, 631–651. [Google Scholar] [CrossRef]
- Pandey, C.; Mahapatra, M.M.; Kumar, P.; Daniel, F.; Adhithan, B. Softening mechanism of P91 steel weldments using heat treatments. Arch. Civ. Mech. Eng. 2019, 19, 297–310. [Google Scholar] [CrossRef]
- Surkar, H.S.; Kumar, A.; Sirohi, S.; Pandey, S.M.; Świerczyńska, A.; Fydrych, D.; Pandey, C. A dissimilar welded joint of grade 92 steel and AISI 304L steel obtained using IN82 buttering and IN617 filler: Relationship of microstructure and mechanical properties. Arch. Civ. Mech. Eng. 2024, 24, 109. [Google Scholar] [CrossRef]
- Yin, Y.; Faulkner, R.; Starr, F. Austenitic steels and alloys for power plants. In Structural Alloys for Power Plants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 105–152. [Google Scholar] [CrossRef]
- Was, G.S.; Ukai, S. Austenitic stainless steels. In Structural Alloys for Nuclear Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 293–347. [Google Scholar] [CrossRef]
- Patil, J.P.; Paliwal, M.; Mishra, S.K. A Review on the Material Development and Corresponding Properties for Power Plant Applications. Mater. Perform. Charact. 2022, 11, 53–87. [Google Scholar] [CrossRef]
- Viswanathan, R.; Sarver, J.; Tanzosh, J.M. Boiler materials for ultra-supercritical coal power plants—Steam side oxidation. J. Mater. Eng. Perform. 2006, 15, 255–274. [Google Scholar] [CrossRef]
- Maziasz, P.J. Development of creep-resistant and oxidation-resistant austenitic stainless steels for high temperature applications. J. Met. 2018, 70, 66–75. [Google Scholar] [CrossRef]
- Bhaduri, A.K.; Venkadesan, S.; Rodriguez, P.; Mukunda, P.G. Transition metal joints for steam generators—An overview. Int. J. Press. Vessel. Pip. 1994, 58, 251–265. [Google Scholar] [CrossRef]
- Thakare, J.G.; Pandey, C.; Mahapatra, M.M.; Mulik, R.S. An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel. J. Manuf. Process. 2019, 48, 249–259. [Google Scholar] [CrossRef]
- Dak, G.; Pandey, C. A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application. J. Manuf. Process. 2020, 58, 377–406. [Google Scholar] [CrossRef]
- DuPont, J.N. Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds. Inter. Mater. Rev. 2012, 57, 208–234. [Google Scholar] [CrossRef]
- DuPont, J.N.; Babu, S.; Liu, S. Welding of materials for energy applications. Metall. Mater. Trans. A 2013, 44, 3385–3410. [Google Scholar] [CrossRef]
- Thakare, J.G.; Pandey, C.; Gupta, A.; Taraphdar, P.K.; Mahapatra, M.M. Role of the heterogeneity in microstructure on the mechanical performance of the Autogenous Gas Tungsten Arc (GTA) welded dissimilar joint of F/M P91 and SS304L steel. Fusion Eng. Des. 2021, 168, 112616. [Google Scholar] [CrossRef]
- Pandey, C. Mechanical and metallurgical characterization of dissimilar P92/SS304 L welded joints under varying heat treatment regimes. Metall. Mater. Trans. A 2020, 51, 2126–2142. [Google Scholar] [CrossRef]
- Cao, J.; Gong, Y.; Zhu, K.; Yang, Z.G.; Luo, X.M.; Gu, F.M. Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels. Mater. Des. 2011, 32, 2763–2770. [Google Scholar] [CrossRef]
- Kumar, R.; Varma, A.; Kumar, Y.R.; Neelakantan, S.; Jain, J. Enhancement of mechanical properties through modified post-weld heat treatment processes of T91 and Super304H dissimilar welded joint. J. Manuf. Process. 2022, 78, 59–70. [Google Scholar] [CrossRef]
- Dak, G.; Singh, V.; Kumar, A.; Sirohi, S.; Bhattacharyya, A.; Pandey, C.; Pandey, S.M. Microstructure and mechanical behaviour study of the dissimilar weldment of ‘IN82 buttered’P92 steel and AISI 304L steel for ultra super critical power plants. Mater. Today Commun. 2023, 37, 107552. [Google Scholar] [CrossRef]
- Sirohi, S.; Taraphdar, P.K.; Dak, G.; Pandey, C.; Sharma, S.K.; Goyal, A. Study on evaluation of through-thickness residual stresses and microstructure-mechanical property relation for dissimilar welded joint of modified 9Cr–1Mo and SS304H steel. Inter. J. Press. Vessel. Pip. 2021, 194, 104557. [Google Scholar] [CrossRef]
- Dak, G.; Pandey, C. Experimental investigation on microstructure, mechanical properties, and residual stresses of dissimilar welded joint of martensitic P92 and AISI 304L austenitic stainless steel. Inter. J. Press. Vessel. Pip. 2021, 194, 104536. [Google Scholar] [CrossRef]
- Sirohi, S.; Pandey, C.; Goyal, A. Role of the Ni-based filler (IN625) and heat-treatment on the mechanical performance of the GTA welded dissimilar joint of P91 and SS304H steel. J. Manuf. Process. 2021, 65, 174–189. [Google Scholar] [CrossRef]
- Dak, G.; Khanna, N.; Pandey, C. Study on narrow gap welding of martensitic grade P92 and austenitic grade AISI 304L SS steel for ultra-supercritical power plant application. Arch. Civ. Mech. Eng. 2023, 23, 14. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, Q.; Deng, J.; Wang, Y. Influence of Aging treatment on the microstructure and mechanical properties of T92/Super 304H dissimilar metal welds. Mater. High Temp. 2018, 35, 327–334. [Google Scholar] [CrossRef]
- Bhanu, V.; Gupta, A.; Pandey, C. Role of A-TIG process in joining of martensitic and austenitic steels for ultra-supercritical power plants-a state of the art review. Nucl. Eng. Technol. 2022, 54, 2755–2770. [Google Scholar] [CrossRef]
- Sharma, P.; Dwivedi, D.K. Wire-feed assisted A-TIG welding of dissimilar steels. Arch. Civ. Mech. Eng. 2021, 21, 81. [Google Scholar] [CrossRef]
- Kulkarni, A.; Dwivedi, D.K.; Vasudevan, M. A Functionally Graded Joint between P91 Steel and AISI 316L SS. Weld. J. 2021, 100, 269–280. [Google Scholar] [CrossRef]
- Sharma, P.; Dwivedi, D.K. A-TIG welding of dissimilar P92 steel and 304H austenitic stainless steel: Mechanisms, microstructure and mechanical properties. J. Manuf. Process. 2019, 44, 166–178. [Google Scholar] [CrossRef]
- Vidyarthy, R.S.; Dwivedi, D.K. Activating flux tungsten inert gas welding for enhanced weld penetration. J. Manuf. Process. 2016, 22, 211–228. [Google Scholar] [CrossRef]
- Sharma, P.; Dwivedi, D.K. Study on Flux assisted-Tungsten inert gas welding of bimetallic P92 martensitic steel-304H austenitic stainless steel using SiO2–TiO2 binary flux. Int. J. Press. Vessel. Pip. 2021, 192, 104423. [Google Scholar] [CrossRef]
- Sivateja, P.; Vidyarthy, R.S.; Dwivedi, D.K. Role of Activating Flux in Weld Bead Symmetricity during Dissimilar Metal Joining. Steel Res. Int. 2024, 95, 2400324. [Google Scholar] [CrossRef]
- Huang, H.Y.; Shyu, S.W.; Tseng, K.H.; Chou, C.P. Evaluation of TIG flux welding on the characteristics of stainless steel. Sci. Technol. Weld. Join. 2005, 10, 566–573. [Google Scholar] [CrossRef]
- Vidyarthy, R.S.; Kulkarni, A.; Dwivedi, D.K. Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint. Mater. Sci. Eng. A 2017, 695, 249–257. [Google Scholar] [CrossRef]
- Sharma, P.; Dwivedi, D.K. Comparative study of activated flux-GTAW and multipass-GTAW dissimilar P92 steel-304H ASS joints. Mater. Manuf. Process. 2019, 34, 1195–1204. [Google Scholar] [CrossRef]
- Kulkarni, A.; Dwivedi, D.K.; Vasudevan, M. Dissimilar metal welding of P91 steel-AISI 316L SS with Incoloy 800 and Inconel 600 interlayers by using activated TIG welding process and its effect on the microstructure and mechanical properties. J. Mater. Process. Technol. 2019, 274, 116280. [Google Scholar] [CrossRef]
- Tsai, M.H.; Yeh, J.W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Sonar, T.; Ivanov, M.; Trofimov, E.; Tingaev, A.; Suleymanova, I. An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications. Mater. Sci. Ener. Technol. 2024, 7, 35–60. [Google Scholar] [CrossRef]
- Shen, J.; Agrawal, P.; Rodrigues, T.A.; Lopes, J.G.; Schell, N.; Zeng, Z.; Oliveira, J.P. Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy. Mater. Des. 2022, 223, 111176. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.; Wang, T.; Li, T. A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 2014, 4, 6200. [Google Scholar] [CrossRef]
- Peng, P.; Feng, X.; Li, S.; Wei, B.; Zhang, M.; Xu, Y.; Wang, J. Effect of heat treatment on microstructure and mechanical properties of as-cast AlCoCrFeNi2. 1 eutectic high entropy alloy. J. Alloys Compd. 2023, 939, 168843. [Google Scholar] [CrossRef]
- Wani, I.S.; Bhattacharjee, T.; Sheikh, S.; Lu, Y.P.; Chatterjee, S.; Bhattacharjee, P.P.; Tsuji, N. Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater. Res. Lett. 2016, 4, 174–179. [Google Scholar] [CrossRef]
- Li, S.; Hou, X.; Wang, X.; Liu, Z.; Xia, Y.; Dong, H. Weldability of high entropy alloys: Microstructure, mechanical property, and corrosion resistance. J. Manuf. Process. 2023, 99, 209–229. [Google Scholar] [CrossRef]
- Sonar, T.; Ivanov, M.; Trofimov, E.; Tingaev, A.; Suleymanova, I. A comprehensive review on fusion welding of high entropy alloys–processing, microstructural evolution and mechanical properties of joints. Inter. J. Lightweight Mater. Manuf. 2024, 7, 122–183. [Google Scholar] [CrossRef]
- Sonar, T.; Ivanov, M.; Trofimov, E.; Tingaev, A.; Suleymanova, I. A critical review on solid-state welding of high entropy alloys–processing, microstructural characteristics and mechanical properties of joints. Def. Technol. 2024, 34, 78–133. [Google Scholar] [CrossRef]
- Li, P.; Sun, H.-T.; Li, C.; Wu, B.-S.; Yang, J.; Jiang, Y.; Dong, H.-G. A novel strengthening strategy for diffusion bonded joint of AlCoCrFeNi2. 1 eutectic high entropy alloy to 304 stainless steel. Trans. Nonferrous Met. Soc. China 2023, 33, 2121–2135. [Google Scholar] [CrossRef]
- Li, P.; Sun, H.; Wang, S.; Xia, Y.; Dong, H.; Wen, G.; Zhang, H. Diffusion bonding of AlCoCrFeNi2. 1 eutectic high entropy alloy to GH4169 superalloy. Mater. Sci. Eng. A 2020, 793, 139843. [Google Scholar] [CrossRef]
- Siefert, J.A.; David, S.A. Weldability and weld performance of candidate austenitic alloys for advanced ultrasupercritical fossil power plants. Sci. Technol. Weld. Join. 2014, 19, 271–294. [Google Scholar] [CrossRef]
- Rathore, S.; Kumar, A.; Sirohi, S.; Pandey, S.M.; Gupta, A.; Fydrych, D.; Pandey, C. Advanced ultra super critical power plants: Role of buttering layer. Int. J. Adv. Manuf. Technol. 2024, 134, 5021–5064. [Google Scholar] [CrossRef]
- ISO 17637; Non-Destructive Testing of Welds—Visual Testing of Fusion-Welded Joints. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 6520-1; Welding and Allied Processes—Classification of Geometric Imperfections in Metallic Materials. Part 1: Fusion Welding. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 5817; Welding—Fusion-Welded Joints in Steel, Nickel, Titanium and Their Alloys (Beam Welding Excluded)—Quality Levels for Imperfections. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 17636-1; Non-Destructive testing of Welds—Radiographic Testing, Part 1: X- and Gamma-Ray Techniques with Film. International Organization for Standardization: Geneva, Switzerland, 2022.
- Sándor, T.; Mekler, C.; Dobránszky, J.; Kaptay, G. An improved theoretical model for A-TIG welding based on surface phase transition and reversed Marangoni flow. Metall. Mater. Trans. A 2013, 44, 351–361. [Google Scholar] [CrossRef]
Material | C | Si | Mn | Cr | Ni | V | Mo | Ti | Al | Nb | Co | Cu | B | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P91 steel | 0.052 | 0.41 | 0.46 | 8.2 | 0.25 | 0.19 | 1.0 | 0.01 | 0.01 | 0.048 | 0.014 | 0.06 | 0.001 | 89.28 |
304L steel | 0.015 | 0.45 | 1.56 | 18.05 | 8.16 | 0.09 | 0.32 | 0.01 | 0.005 | 0.01 | 0.17 | 0.41 | 0.001 | 70.72 |
IN-82 filler rod | 0.05 | 0.148 | 2.15 | 18.2 | 70.7 | 0.01 | 0.03 | 0.2 | 0.09 | 2.1 | 0.15 | 0.016 | 0.3 | 5.86 |
EHEA Interlayer | -- | -- | -- | 16.73 | 38.81 | -- | -- | -- | 7.25 | -- | 18.60 | -- | -- | 18.61 |
BM Plate | Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | Impact Toughness (J) |
---|---|---|---|---|
P91 steel | 710 | 600 | 24 | 110 |
304L steel | 680 | 372 | 69 | 155 |
Sr. No. | Parameters | A-TIG | Multipass-TIG |
---|---|---|---|
1. | Welding passes | 02 (01 Front and 01 back side) | 07 (01 root pass + 06 filling pass) |
2. | Welding current | 210 A | Root pass: 160 A Filling pass: 120 A |
3. | Welding voltage | 13 V | 11.5–13 V |
4. | Welding time | 70 mm/min | Root pass: 70 mm/min Filling pass: 90 mm/min |
5. | Preheating temperature | 200–250 °C | 200–250 °C |
6. | Interpass temperature | --- | 200–250 °C |
7. | Heat input per pass | 1.404 kJ/mm | Root pass: 0.946 kJ/mm Filling pass: 0.624 kJ/mm |
8. | Overall heat input | 2.808 kJ/mm | 4.69 kJ/mm |
9. | Shielding gas flow rate | 10 L/min | 10 L/min |
10. | Tungsten electrode diameter | 1.6 mm | 1.6 mm |
11. | Tungsten electrode angle | 60° | 60° |
Sr. No. | Type of Internal Defects as per ISO 6520-1 [53] | Acceptance Level 1 | Acceptance Level 2 | Acceptance Level 3 | Multipass-TIG Joints | A-TIG Joints |
---|---|---|---|---|---|---|
1. | Crater cracks | Not allowed | Not allowed | Not allowed | No crater cracks | No crater cracks |
2. | Undercut, continuous and Intermittent, t > 3 mm | Smooth transition is required h ≤ 0.05 t, max. 0.5 mm | Smooth transition is required h ≤ 0.1 t, max. 0.5 mm | Smooth transition is required h ≤ 0.2 t, max. 1 mm | No undercuts | No undercuts |
3. | Shrinkage groove (root undercut) | Smooth transition is required l ≤ 25 mm, h ≤ 0.05 t, max. 0.5 mm | Smooth transition is required l ≤ 25 mm, h ≤ 0.1 t, max. 1 mm | Smooth transition is required l ≤ 25 mm, h ≤ 0.2 t, max. 2 mm | No root undercuts | No root undercuts |
4. | Excess penetration 0.5 mm ≤ t ≤ 3 mm | h ≤ 1 mm + 0.1 b | h ≤ 1 mm + 0.3 b | h ≤ 1 mm + 0.6 b | Excess penetration h ≤ 1 mm + 0.1 b h = 1.22 mm 1.22 ≤ 1.97 | No excess penetration |
5. | Spatter | Acceptance depends on application, e.g., material, corrosion protection. | No spatter | No spatter | ||
6. | Root concavity 0.5 mm ≤ s ≤ 3 mm | Not allowed | l ≤ 25 mm, h ≤ 0.1 t | h ≤ 0.2 mm + 0.1 t | No root concavity | No root concavity |
7. | Incompletely filled groove 0.5 mm ≤ s ≤ 3 mm | Not allowed | l ≤ 25 mm, h ≤ 0.1 t, max. 1 mm | l ≤ 25 mm, h ≤ 0.25 t | No lack of penetration | No lack of penetration |
8. | Linear misalignment 0.5 mm ≤ s ≤ 3 mm | h ≤ 0.2 mm + 0.1 t | h ≤ 0.2 mm + 0.15 t | h ≤ 0.2 mm + 0.25 t | No linear misalignment | No linear misalignment |
Sr. No. | Type of Internal Defects as per ISO 6520-1 [53] | Acceptance Level 1 | Acceptance Level 2 | Acceptance Level 3 | Multipass-TIG Joints | A-TIG Joints |
---|---|---|---|---|---|---|
1. | Cracks | Not allowed | Not allowed | Not allowed | No cracks | No cracks |
2. | Porosity | A ≤ 1% d ≤ 0.2 s, max. 3 mm L = 100 mm | A ≤ 1.5% d ≤ 0.3 s, max. 4 mm L = 100 mm | A ≤ 2.5% d ≤ 0.4 s, max. 5 mm L = 100 mm | A ≤ 1% d ≤ 0.2 s, max. 3 mm L = 100 mm | A ≤ 1% d ≤ 0.2 s, max. 3 mm L = 100 mm |
3. | Clustered (localized) porosity | dA ≤ wp/2, max. 15 mm d ≤ 0.2 s, max. 3 mm | dA ≤ wp, max. 20 mm d ≤ 0.3 s, max. 4 mm | dA ≤ wp, max. 25 mm d ≤ 0.4 s, max. 5 mm | No clustered porosity | No clustered porosity |
4. | Linear Porosity | l ≤ s, max. 25 mm d ≤ 0.2 s, max. 2 mm L = 100 mm | l ≤ s, max. 50 mm d ≤ 0.3 s, max. 3 mm L = 100 mm | l ≤ s, max. 75 mm d ≤ 0.4 s, max. 4 mm L = 100 mm | No linear porosity | No linear porosity |
5. | Lack of fusion | Not allowed | Not allowed | Not breaking the surface l ≤ 0.4 s, max. 4 mm | No lack of fusion | No lack of fusion |
6. | Elongated cavities and wormholes | h < 0.2 s, max. 2 mm Σl ≤ s, max. 25 mm L = 100 mm | h < 0.3 s, max. 3 mm Σl ≤ s, max. 50 mm L = 100 mm | h < 0.4 s, max. 4 mm Σl ≤ s, max. 75 mm L = 100 mm | No elongated cavities | No elongated cavities |
7. | Lack of penetration | Σl ≤ 25 mm, L = 100 mm | Not allowed | Not allowed | No lack of penetration | No lack of penetration |
Sr. No. | Joint | Angular Distortion | |||
---|---|---|---|---|---|
Line 1 | Line 2 | Line 3 | Mean | ||
1. | Multipass-TIG joint | 1.6° | 1.15° | 0.72° | 1.15° |
2. | A-TIG joint | 0.86° | 0.6° | 0.07° | 0.51° |
Cost in Rubles | A-TIG Welding | Multipass-TIG Welding |
---|---|---|
Welder | 500/- | 2500/- |
Shielding gas | 66.08/- | 205.33/- |
Preheating flame gas | 125/- | 290/- |
Filler wire | -- | 1200/- |
EHEA interlayer | 100/- | --- |
Flux | 15/- | --- |
Welding power | 1.12/- | 5.78/- |
Groove machining | -- | 450/- |
Total cost | 807.2/- | 4651/- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sonar, T.; Ivanov, M.; Shcherbakov, I.; Trofimov, E.; Khasanova, E.; Cheepu, M.; Liu, K. Enhancing Welding Productivity and Mitigation of Distortion in Dissimilar Welding of Ferritic-Martensitic Steel and Austenitic Stainless Steel Using Robotic A-TIG Welding Process. J. Manuf. Mater. Process. 2024, 8, 283. https://doi.org/10.3390/jmmp8060283
Sonar T, Ivanov M, Shcherbakov I, Trofimov E, Khasanova E, Cheepu M, Liu K. Enhancing Welding Productivity and Mitigation of Distortion in Dissimilar Welding of Ferritic-Martensitic Steel and Austenitic Stainless Steel Using Robotic A-TIG Welding Process. Journal of Manufacturing and Materials Processing. 2024; 8(6):283. https://doi.org/10.3390/jmmp8060283
Chicago/Turabian StyleSonar, Tushar, Mikhail Ivanov, Igor Shcherbakov, Evgeny Trofimov, Emiliya Khasanova, Muralimohan Cheepu, and Kun Liu. 2024. "Enhancing Welding Productivity and Mitigation of Distortion in Dissimilar Welding of Ferritic-Martensitic Steel and Austenitic Stainless Steel Using Robotic A-TIG Welding Process" Journal of Manufacturing and Materials Processing 8, no. 6: 283. https://doi.org/10.3390/jmmp8060283
APA StyleSonar, T., Ivanov, M., Shcherbakov, I., Trofimov, E., Khasanova, E., Cheepu, M., & Liu, K. (2024). Enhancing Welding Productivity and Mitigation of Distortion in Dissimilar Welding of Ferritic-Martensitic Steel and Austenitic Stainless Steel Using Robotic A-TIG Welding Process. Journal of Manufacturing and Materials Processing, 8(6), 283. https://doi.org/10.3390/jmmp8060283