Overview and Future Advanced Engineering Applications for Morphing Surfaces by Shape Memory Alloy Materials
Abstract
:1. Introduction
2. Overview of the State of the Art of SMA Actuators
3. Adaptive Aerodynamic Applications
4. Description of Case Studies
4.1. Case Study #1—Trailing Edge Actuation
4.2. Case Study #2—Rear Upper Panel Actuation
5. Numerical Simulation
5.1. SMA Modeling
5.2. Case Study #1
5.3. Case Study #2
6. Conclusions and Discussion of Future Trends
Funding
Conflicts of Interest
References
- Qiu, J.; Wang, C.; Huang, C.; Ji, H.; Xu, Z. Smart skin and actuators for morphing structures. Procedia IUTAM 2013, 10, 427–441. [Google Scholar] [CrossRef]
- Weisshaar, T.A.; Duke, D.K. Induced drag reduction using aeroelastic tailoring with adaptive control surfaces. J. Aircr. 2006, 43, 157–164. [Google Scholar] [CrossRef]
- Bowman, J.; Sanders, B.; Cannon, B.; Kudva, J.; Joshi, S.; Weisshaar, T. Development of next generation morphing aircraft structures. In Collection of Technical Papers, Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 22–26 April 2007; Volume 1, pp. 349–358. [Google Scholar]
- Hwang, S.-H.; Park, H.W.; Park, Y.-B. Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube-graphene nanoplatelet hybrid sheets. Smart Mater. Struct. 2013, 22, 015013. [Google Scholar] [CrossRef]
- John, A.; Chen, Y.; Kim, J. Synthesis and characterization of cellulose acetateecalcium carbonate hybrid nanocomposite. Compos. Part B Eng. 2012, 43, 522–525. [Google Scholar] [CrossRef]
- Hou, Y.; Neville, R.; Scarpa, F.; Remilat, C.; Gu, B.; Ruzzene, M. Graded conventionalauxetic Kirigami sandwich structures: Flatwise compression and edgewise loading. Compos. Part B Eng. 2014, 59, 33–42. [Google Scholar] [CrossRef]
- Wang, W.; Rodrigue, H.; Ahn, S.-H. Smart soft composite actuator with shape retention capability using embedded fusible alloy structures. Compos. Part B Eng. 2015, 78, 507–514. [Google Scholar] [CrossRef]
- Brinson, L. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 1993, 4, 229–242. [Google Scholar] [CrossRef]
- Khoo, Z.X.; An, J.; Chua, C.K.; Shen, Y.F.; Kuo, C.N.; Liu, Y. Effect of heat treatment on repetitively scanned SLM NiTi shape memory alloy. Materials 2019, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Van Humbeeck, J. Shape memory alloys: A material and a technology. Adv. Eng. Mater. 2001, 3, 837–850. [Google Scholar] [CrossRef]
- Icardi, U.; Ferrero, L. Preliminary study of an adaptive wing with shape memory alloy torsion actuators. Mater. Des. 2009, 30, 4200–4210. [Google Scholar] [CrossRef]
- Coutu, D.; Brailovski, V.; Terriault, P.; Mamou, M.; Mébarki, Y.; Laurendeau, É. Lift-to-drag ratio and laminar flow control of a morphing laminar wing in a wind tunnel. Smart Mater. Struct. 2011, 20, 035019. [Google Scholar] [CrossRef]
- Berton, B. Shape memory alloys application: Trailing edge shape control. In Multifunctional Structures/Integration of Sensors and Antennas, Proceedings of the RTO-MP-AVT-141, Neuilly-sur-Seine, France, 2–4 October 2006. [Google Scholar]
- Manzo, J.; Garcia, E. Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism. Smart Mater. Struct. 2010, 19, 025012. [Google Scholar] [CrossRef]
- Dano, M.L.; Hyer, M.W. SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates. Int. J. Solids Struct. 2003, 40, 5949–5972. [Google Scholar] [CrossRef]
- Pons, J.L. Emerging Actuator Technologies—A Micromechatronic Approach; John Wiley & Sons: London, UK, 2005. [Google Scholar]
- Wu, R.; Han, M.-W.; Lee, G.-Y.; Ahn, S.-H. Woven type smart soft composite beam with in-plane shape retention. Smart Mater. Struct. 2013, 22, 125007. [Google Scholar] [CrossRef]
- Hartl, D.J.; Lagoudas, D.C. Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2007, 221, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Fujita, H.; Toshiyoshi, H. Micro actuators and their applications. Microelectron. J. 1998, 29, 637–640. [Google Scholar] [CrossRef]
- Koh, J.-S. Design of shape memory alloy coil spring actuator for improving performance in cyclic actuation. Materials 2018, 11, 2324. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, L.; Cuschieri, A. Design of a 2 DOFs mini hollow joint actuated with SMA wires. Materials 2018, 11, 2014. [Google Scholar] [CrossRef] [PubMed]
- Bellini, A.; Colli, M.; Dragoni, E. Mechatronic design of a shape memory alloy actuator for automotive tumble flaps: A case study. IEEE Trans. Ind. Electron. 2009, 56, 2644–2656. [Google Scholar] [CrossRef]
- Strittmatter, J.; Gümpel, P.; Zhigang, H. Long-time stability of shape memory actuators for pedestrian safety system. J. Achiev. Mater. Manuf. Eng. 2009, 34, 23–30. [Google Scholar]
- Williams, E.A.; Shaw, G.; Elahinia, M. Control of an automotive shape memory alloy mirror actuator. Mechatronics 2010, 20, 527–534. [Google Scholar] [CrossRef]
- Zychowicz, R. Exterior View Mirror for a Motor Vehicle. U.S. Patent 5166832; Britax (GECO) SA, 24 November 1992. [Google Scholar]
- Leary, M.; Huang, S.; Ataalla, T.; Baxter, A.; Subic, A. Design of shape memory alloy actuators for direct power by an automotive battery. Mater. Des. 2013, 43, 460–466. [Google Scholar] [CrossRef]
- Suzuki, M. Rotatable Door Mirror for a Motor Vehicle. U.S. Patents 4626085, 2 December 1986. [Google Scholar]
- Brugger, D.; Kohl, M.; Hollenbach, U.; Kapp, A.; Stiller, C. Ferromagnetic shape memory microscanner system for automotive applications. Int. J. Appl. Electromagnet. Mech. 2006, 23, 107–112. [Google Scholar] [CrossRef]
- Knowles, G.; Bird, R.W. Telescopic wing system. In U.S. Patent 6834835B1; QorTek Inc.: Williamsport, PA, USA, 2004. [Google Scholar]
- Manzo, J.; Garcia, E.; Wickenheiser, A.; Horner, G.C. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism. In Proc. SPIE 5764, Smart Structures and Materials 2005: Smart Structures and Integrated Systems; SPIE: Bellingham, WA, USA, 2005. [Google Scholar] [CrossRef]
- Kutlucinar, I. Aircraft with shape memory alloys for retractable landing gear. In U.S. Patent 6938416B1; Emergency Warning Systems Inc.: Balwyn, Australia, 2005. [Google Scholar]
- Song, G.; Ma, N. Shape memory alloy actuated adaptive exhaust nozzle for jet engine. In U.S. Patents 8245516; University of Houston: Houston, TX, USA, 2012. [Google Scholar]
- Core, R.A. Dilating fan duct nozzle. In U.S. Patent 7716932B2; Spirit AeroSystems Inc.: Wichita, KS, USA, 2010. [Google Scholar]
- Shmilovich, A.; Yadlin, Y.; Smith, D.M.; Clark, R.W. Integrated engine exhaust systems and methods for drag and thermal stress reduction. In U.S. Patent 7669785B2; The Boeing Co.: Chicago, IL, USA, 2010. [Google Scholar]
- Mons, C.M. Actuating device, bypass air bleed system equipped therewith, and turbojet engine comprising these. In U.S. Patents 2009/0056307A1; SNECMA: Courcouronnes, France, 2008. [Google Scholar]
- Wood, J.H. Shape changing structure in a jet engine nacelle nozzle and corresponding jet engine and operating method. In EP Patent 1,817,489; The Boeing Co.: Chicago, IL, USA, 2007. [Google Scholar]
- Wood, J.H.; Dunne, J.P. Morphing structure. In U.S. Patent 7340883B2; The Boeing Co.: Chicago, IL, USA, 2008. [Google Scholar]
- Larssen, J.V.; Calkins, F.T. Deployable Flap Edge Fence. In U.S. Patent 2013/US8469315B2; The Boeing Co.: Chicago, IL, USA, 2010. [Google Scholar]
- Mabe, J.H.; Calkins, F.T.; Bushnell, G.S.; Bieniawski, S.R. Aircraft systems with shape memory alloy (SMA) actuators, and associated methods. In U.S. Patent 7878459B2; The Boeing Co.: Chicago, IL, USA, 2011. [Google Scholar]
- Widdle, R.D.; Grimshaw, M.T.; Crosson-Elturan, K.S.; Mabe, J.H.; Calkins, F.T.; Gravatt, L.M.; Shome, M. High stiffness shape memory alloy actuated aerostructure. In U.S. Patent 2011/0030380A1; The Boeing Co.: Chicago, IL, USA, 2009. [Google Scholar]
- Mani, R.; Lagoudas, D.C.; Rediniotis, O.K. MEMS-based active skin for turbulent drag reduction. Smart Struct. Mater. 2003, 5056, 9–20. [Google Scholar]
- Mohammad, T.; Jeng-Jong, R.; Chuh, M. Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates. Smart Mater. Struct. 2002, 11, 297. [Google Scholar]
- Tzou, H.S.; Lee, H.J.; Arnold, S.M. Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mech. Adv. Mater. Struct. 2004, 11, 367–393. [Google Scholar] [CrossRef]
- Neugebauer, R.; Bucht, A.; Pagel, K.; Jung, J. Numerical simulation of the activation behavior of thermal shape memory alloys. Proc. SPIE Int. Soc. Opt. Eng. 2010, 7645, 76450J. [Google Scholar]
- Actuator Solutions GmbH (ASG). Available online: https://www.actuatorsolutions.de/products/ (accessed on 13 February 2019).
- Thill, C.; Etches, J.; Bond, I.; Potter, K.; Weaver, P. Morphing skins. Aeronaut. J. 2008, 112, 117–139. [Google Scholar] [CrossRef]
- Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 2002, 41, 2035–2057. [Google Scholar] [CrossRef]
- Wang, D.P.; Bartley-Cho, J.D.; Martin, C.A.; Hallam, B. Development of high-rate large deflection hingeless trailing edge control surface for the smart wing wind tunnel model. In Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies; SPIE: Bellingham, WA, USA, 2001; Volume 4332. [Google Scholar]
- Barbarino, S.; Bilgen, O.; Ajaj, R.M.; Friswell, M.I.; Inman, D.J. A review of morphing aircraft. J. Intel. Mater. Syst. Struct. 2011, 22, 823–877. [Google Scholar] [CrossRef]
- Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Chu, W.-S.; Lee, K.-T.; Song, S.-H.; Han, M.-W.; Lee, J.-Y.; Kim, H.-S.; Kim, M.-S.; Park, Y.-J.; Cho, K.-J.; Ahn, S.-H. Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 2012, 13, 1281–1292. [Google Scholar] [CrossRef]
- Sofla, A.Y.N.; Meguid, S.A.; Tan, K.T.; Yeo, W.K. Shape morphing of aircraft wing: Status and challenges. Mater. Des. 2010, 31, 1284–1292. [Google Scholar] [CrossRef]
- Sofla, A.Y.N.; Elzey, D.M.; Wadley, H.N.G. Shape morphing hinged truss structures. Smart Mater. Struct. 2009, 18, 065012. [Google Scholar] [CrossRef]
- Elzey, D.M.; Sofia, A.Y.N.; Wadley, H.N.G. A shape memory-based multifunctional structural actuator panel. Int. J. Solids Struct. 2005, 42, 1943–1955. [Google Scholar] [CrossRef]
- Han, M.-W.; Rodrigue, H.; Cho, S.; Song, S.-H.; Wang, W.; Chu, W.-S.; Ahn, S.-H. Woven type smart soft composite for soft morphing car spoiler. Compos. Part B Eng. 2016, 86, 285–298. [Google Scholar] [CrossRef]
- Hübler, M.; Gurka, M.; Schmeer, S.; Breuer, U.P. Performance range of SMA actuator wires and SMA-FRP structure in terms of manufacturing, modeling and actuation. Smart Mater. Struct. 2013, 22, 094002. [Google Scholar] [CrossRef]
- Hübler, M.; Gurka, M.; Breuer, U.P. From attached shape memory alloy wires to integrated active elements, a small step? Impact of local effects on direct integration in fiber reinforced plastics. J. Compos. Mater. 2015, 49, 1895–1905. [Google Scholar] [CrossRef]
- Dong, Y.; Boming, Z.; Jun, L. A changeable aerofoil actuated by shape memory alloy springs. Mater. Sci. Eng. A 2008, 485, 243–250. [Google Scholar] [CrossRef]
- Georges, T.; Brailovski, V.; Coutu, D.; Terriault, P. Experimental validation of the 3D numerical model for an adaptive laminar wing with flexible extrados. In Proceedings of the International Conference on Shape Memory and Superelastic Technol, SMST, Tsukuba City, Japan, 3–5 December 2007. [Google Scholar]
- Maclean, B.J.; Carpenter, B.F.; Misra, M.S. Adaptive Control Surface Using Antagonistic Shape Memory Alloy Tendons. U.S. Patent 5662294A, 2 September 1997. [Google Scholar]
- Beauchamp, C.H.; Nedderman, W.H., Jr. Controllable Camber Windmill Blades. U.S. Patent 6465902B1, 15 October 2002. [Google Scholar]
- Kim, H.-J.; Song, S.-H.; Ahn, S.-H. A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater. Struct. 2013, 22, 014007. [Google Scholar] [CrossRef]
- Wang, W.; Lee, J.-Y.; Rodrigue, H.; Song, S.-H.; Chu, W.-S.; Ahn, S.-H. Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspir. Biomim. 2014, 9, 046006. [Google Scholar] [CrossRef] [PubMed]
- Lazos, B.S. Biologically inspired fixed-wing configuration studies. J. Aircr. 2005, 42, 1089–1098. [Google Scholar] [CrossRef]
- Garner, L.J.; Wilson, L.N.; Lagoudas, D.C.; Rediniotis, O.K. Development of a shape memory alloy actuated biomimetic vehicle. Smart Mater. Struct. 2000, 9, 673–683. [Google Scholar] [CrossRef]
- Rediniotis, O.K.; Wilson, L.N.; Lagoudas, D.C.; Khan, M.M. Development of a shape-memory-alloy actuated biomimetic hydrofoil. J. Intell. Mater. Syst. Struct. 2002, 13, 35–49. [Google Scholar] [CrossRef]
- Han, M.-W.; Rodrigue, H.; Kim, H.-I.; Song, S.-H.; Ahn, S.-H. Shape memory alloy/glass fiber woven composite for soft morphing winglets of unmanned aerial vehicles. Compos. Struct. 2016, 140, 202–212. [Google Scholar] [CrossRef]
- Simpson, J.O.; Wise, S.A.; Bryant, R.G.; Cano, R.J.; Gates, T.S.; Hinkley, J.A.; Rogowski, R.S.; Whitley, K.S. Innovative materials for aircraft morphing. Proc. SPIE Int. Soc. Opt. Eng. 1998, 3326, 240–249. [Google Scholar] [Green Version]
- Guida, M.; Sellitto, A.; Marulo, F.; Riccio, A. Analysis of the impact dynamics of shape memory alloy hybrid composites for advanced applications. Materials 2019, 12, 153. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.-H.; Kim, J.-H. Adaptability of hybrid smart composite plate under low velocity impact. Compos. Part B Eng. 2003, 34, 117–125. [Google Scholar] [CrossRef]
- Sun, M.; Chang, M.; Wang, Z.; Li, H.; Liu, Y. Simulation of eccentric impact of square and rectangular composite laminates embedded with SMA. Materials 2018, 11, 2371. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Z.; Yu, Z.; Sun, M.; Liu, Y. The low velocity impact response of foam core sandwich panels with a shape memory alloy hybrid face-sheet. Materials 2018, 11, 2076. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Kong, F.; Sun, M.; He, J. A three-phase model characterizing the low-velocity impact response of SMA-reinforced composites under a vibrating boundary condition. Materials 2018, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Nam, C.; Chattopadhyay, A.; Kim, Y. Application of shape memory alloy (SMA) spars for aircraft manoeuvre enhancement. Proc. SPIE 2002, 226–237. [Google Scholar]
- Manzo, J.E. Analysis and Design of a Hyper-Elliptical Cambered Span Morphing Aircraft. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2006. [Google Scholar]
- Jacob, J.D.; Simpson, A.D.; Smith, S.W. Design and flight testing of inflatable wings with wing warping. SAE Trans. J. Aerosp. 2005, 1-3392, 1306–1315. [Google Scholar]
- Cincotta, M.; Nadolink, R.H. Articulated Control Surface. U.S. Patent 5114104A, 19 May 1992. [Google Scholar]
- Barrett, R.; Gross, R.S. Super-active shape-memory alloy composites. Smart Mater. Struct. 1996, 5, 255–260. [Google Scholar] [CrossRef]
- Wiggins, L.D.; Stubbs, M.D.; Johnston, C.O.; Robertshaw, H.H.; Reinholtz, C.F.; Inman, D.J. A design and analysis of a morphing hyper-elliptic cambered span (HECS) wing. In Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, CA, USA, 19–22 April 2004. [Google Scholar]
- Baz, A.; Chen, T.; Ro, J. Shape control of NITINOL-reinforced composite beams. Compos. Part B Eng. 2000, 31, 631–642. [Google Scholar] [CrossRef]
- Ghomshei, M.M.; Tabandeh, N.; Ghazavi, A.; Gordaninejad, F. Nonlinear transient response of a thick composite beam with shape memory alloy layers. Compos. Part B Eng. 2005, 36, 9–24. [Google Scholar] [CrossRef]
- Lagoudas, D.; Hartl, D.; Chemisky, Y.; Machado, L.; Popov, P. Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int. J. Plast. 2012, 32, 155–183. [Google Scholar] [CrossRef]
- Khan, A.S.; Huang, S. Continuum Theory of Plasticity; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Lagoudas, D.C.; Bo, Z. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, part II: Material characterization and experimental results for a stable transformation cycle. Int. J. Eng. Sci. 1999, 37, 1141–1173. [Google Scholar] [CrossRef]
- Lagoudas, D.C.; Entchev, P.B.; Popov, P.; Patoor, E.; Brinson, L.C.; Gao, X. Shape memory alloys, part II: Modeling of polycrystals. Mech. Mater. 2006, 38, 430–462. [Google Scholar] [CrossRef]
- Peraza-Hernandez, E.A.; Hartl, D.J.; Malak, R.J., Jr. Design and numerical analysis of an SMA mesh-based self-folding sheet. Smart Mater. Struct. 2013, 22, 094008. [Google Scholar] [CrossRef]
- Haghdoust, P.; Conte, A.L.; Cinquemani, S.; Lecis, N. A numerical method to model non-linear damping behaviour of martensitic shape memory alloys. Materials 2018, 11, 2178. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.W. Investigation on the cyclic response of superelastic shape memory alloy (SMA) slit damper devices simulated by quasi-static finite element (FE) analyses. Materials 2014, 7, 1122–1141. [Google Scholar] [CrossRef] [PubMed]
- Exarchos, D.A.; Dalla, P.T.; Tragazikis, I.K.; Dassios, K.G.; Zafeiropoulos, N.E.; Karabela, M.M.; Crescenzo, C.D.; Karatza, D.; Musmarra, D.; Chianese, S.; et al. Development and characterization of high performance Shape Memory Alloy coatings for structural aerospace applications. Materials 2018, 11, 832. [Google Scholar] [CrossRef] [PubMed]
- Icardi, U. Large bending actuator made with SMA contractile wires: Theory, numerical simulation and experiments. Compos. Part B Eng. 2001, 32, 259–267. [Google Scholar] [CrossRef]
- Balta, J.A.; Bosia, F.; Michaud, V.; Dunkel, G.; Botsis, J.; Manson, J.A. Smart composites with embedded shape memory alloy actuators and fibre Bragg grating sensors: Activation and control. Smart Mater. Struct. 2005, 14, 457–465. [Google Scholar] [CrossRef]
- Wang, G.; Shahinpoor, M. Design, prototyping and computer simulations of a novel large bending actuator made with a shape memory alloy. Smart Mater. Struct. 1997, 6, 214–221. [Google Scholar] [CrossRef]
- Liu, S.; Ge, W.; Li, S. Optimal design of compliant trailing edge for shape changing. Chin. J. Aeronaut. 2008, 21, 187–192. [Google Scholar]
- Rodrigue, H.; Bhandari, B.; Han, M.W.; Ahn, S.H. A shape memory alloy-based soft morphing actuator capable of pure twisting motion. J. Intell. Mater. Syst. Struct. 2015, 26, 1071–1078. [Google Scholar] [CrossRef]
- Rodrigue, H.; Wang, W.; Bhandari, B.; Han, M.-W.; Ahn, S.-H. Cross-shaped twisting structure using SMA-based smart soft composite. Int. J. Precis. Eng. Manuf. 2014, 1, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.M.; Han, J.H.; Lee, I. Characteristics of smart composite wing with SMA actuators and optical fiber sensors. Int. J. Appl. Electromagnet. Mech. 2006, 23, 177–186. [Google Scholar] [CrossRef]
- Elzey, D.M.; Sofla, A.Y.N.; Wadley, H.N.G. A bio-inspired, high-authority actuator for shape morphing structures. In Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics; SPIE: Bellingham, WA, USA, 2003; Volume 5053. [Google Scholar]
- Sofla, A.Y.N.; Elzey, D.M.; Wadley, H.N.G. Cyclic degradation of antagonistic shape memory actuated structures. Smart Mater. Struct. 2008, 17, 025014. [Google Scholar] [CrossRef]
- Sofla, A.Y.N.; Elzey, D.M.; Wadley, H.N.G. An antagonistic flexural unit cell for design of shape morphing structures. In Proceedings of the ASME Aerospace Division: Adaptive Materials and Systems, Aerospace Materials and Structures, Anaheim, CA, USA, 13–19 November 2004; pp. 261–269. [Google Scholar]
- Sofla, A.Y.N.; Elzey, D.M.; Wadley, H.N.G. Two-way antagonistic shape actuation based on the one-way shape memory effect. J. Intel. Mater. Syst. Struct. 2008, 19, 1017–1027. [Google Scholar] [CrossRef]
- Strelec, J.K.; Lagoudas, D.C.; Khan, M.A.; Yen, J. Design and implementation of a shape memory alloy actuated reconfigurable airfoil. J. Intel. Mater. Syst. Struct. 2003, 14, 257–273. [Google Scholar] [CrossRef]
- Rodrigue, H.; Wang, W.; Bhandari, B.; Han, M.-W.; Ahn, S.-H. SMA-based smart soft composite structure capable of multiple modes of actuation. Compos. Part B Eng. 2015, 82, 152–158. [Google Scholar] [CrossRef]
- Brinson, L.C.; Huang, M.S. Simplifications and comparisons of shape memory alloy constitutive models. J. Intell. Mater. Syst. Struct. 1996, 7, 108–114. [Google Scholar] [CrossRef]
- Müller, I.; Seelecke, S. Thermodynamic aspects of shape memory alloys. Math. Comput. Model. 2001, 34, 1307–1355. [Google Scholar] [CrossRef]
- Seelecke, S.; Müller, I. Shape memory alloy actuators in smart structures: Modeling and simulation. Appl. Mech. Rev. 2004, 57, 23–46. [Google Scholar] [CrossRef]
- Sharifishourabi, G.; Alebrahim, R.; Sharifi, S.; Ayob, A.; Vrcelj, Z.; Yahya, M.Y. Mechanical properties of potentially-smart carbon/epoxy composites with asymmetrically embedded shape memory wires. Mater. Des. 2014, 59, 486–493. [Google Scholar] [CrossRef]
- Lebied, A.; Necib, B.; Sahli, M.L.; Gelin, J.-C.; Barrière, T. Numerical simulations and experimental results of tensile behaviour of hybrid composite shape memory alloy wires embedded structures. Int. J. Adv. Manuf. Technol. 2016, 86, 359–369. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Cui, L.S.; Schrooten, J. Basic design guidelines for SMA/epoxy smart composites. Mater. Sci. Eng. A 2005, 390, 139–143. [Google Scholar] [CrossRef]
- Ahn, S.-H.; Lee, K.-T.; Kim, H.-J.; Wu, R.; Kim, J.-S.; Song, S.-H. Smart soft composite: An integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials. Int. J. Precis. Eng. Manuf. 2012, 13, 631–634. [Google Scholar] [CrossRef]
- Ghomshei, M.M.; Tabandeh, N.; Ghazavi, A.; Gordaninejad, F. A three-dimensional shape memory alloy/elastomer actuator. Compos. Part B Eng. 2001, 32, 441–449. [Google Scholar] [CrossRef]
- James, T.; Menner, A.; Bismarck, A.; Iannucci, L. Morphing Skins: Development of New Hybrid Materials. In Proceedings of the 4th SEAS DTC Technical Conference, Edinburgh, UK, 7–8 July 2009. [Google Scholar]
- Ashir, M.; Hahn, L.; Kluge, A.; Nocke, A.; Cherif, C. Development of innovative adaptive 3D Fiber Reinforced Plastics based on Shape Memory Alloys. Compos. Sci. Technol. 2016, 126, 43–51. [Google Scholar] [CrossRef]
- Featherstone, R.; Teh, Y.H. Improving the Speed of Shape Memory Alloy Actuators by Faster Electrical Heating. In Experimental Robotics IX; Springer Tracts in Advanced Robotics; Ang, M.H., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 21. [Google Scholar]
- An, L.; Huang, W.M.; Fu, Y.Q.; Guo, N.Q. A note on size effect in actuating NiTi shape memory alloys by electrical current. Mater. Des. 2008, 29, 1432–1437. [Google Scholar] [CrossRef]
- Tadesse, Y.; Thayer, N.; Priya, S. Tailoring the Response Time of Shape Memory Alloy Wires through Active Cooling and Pre-stress. J. Intell. Mater. Syst. Struct. 2010, 21, 19–40. [Google Scholar] [CrossRef]
- Karhu, M.; Lindroos, T. Long-term behaviour of binary Ti-49.7Ni (at.%) SMA actuators—The fatigue lives and evolution of strains on thermal cycling. Smart Mater. Struct. 2010, 19, 115019. [Google Scholar] [CrossRef]
- Fumagalli, L.; Butera, F.; Coda, A. SmartFlex® NiTi wires for shape memory actuators. J. Mater. Eng. Perform. 2009, 18, 691–695. [Google Scholar] [CrossRef]
- Vasquez, J.A.; Garrod, TC. Resettable bi-stable Thermal Valve. In U.S. Patent 7424978B2; Honeywell International Inc.: Charlotte, NC, USA, 2008. [Google Scholar]
- Luchetti, T.; Zanella, A.; Biasiotto, M.; Saccagno, A. Electrically actuated antiglare rear-view mirror based on a shape memory alloy actuator. J. Mater. Eng. Perform. 2009, 18, 717–724. [Google Scholar] [CrossRef]
- Motzki, P.; Seelecke, S. Bistable actuator device having a shape memory element. WO 2017, 194591, A1. [Google Scholar]
- Hochstein, P.A. Bistable Shape Memory Effect Thermal Transducers. U.S. Patent 4544988A, 1 October 1985. [Google Scholar]
- Morgen, R.; Yee, H.H. Electro-Thermal bi-stable Actuator. U.S. Patent 5977858A, 2 November 1999. [Google Scholar]
- Reynaerts, D.; Van Brussel, H. Design aspects of shape memory actuators. Mechatronics 1998, 8, 635–656. [Google Scholar] [CrossRef]
- Perkins, D.A.; Reed, J.L., Jr.; Havens, E. Adaptive wing structures. In: Smart structures and materials 2004: Industrial and commercial applications of smart structures technologies. Proc. SPIE 2004, 5388, 225–233. [Google Scholar]
- Yu, Y.; Li, X.; Zhang, W.; Leng, J. Investigation on Adaptive Wing Structure based on Shape Memory Polymer Composite Hinge. Proc. SPIE 2007, 6423, 64231D. [Google Scholar]
- Popov, A.V.; Labib, M.; Fays, J.; Botez, R.M. Closed-Loop Control Simulations on a Morphing Wing. J. Aircr. 2008, 45, 1794–1803. [Google Scholar] [CrossRef]
- Seow, A.K.; Liu, Y.; Yeo, W.K. Shape Memory Alloy as Actuator to Deflect a Wing Flap. In Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2008, Schaumburg, IL, USA, 7–10 April 2008; pp. 1704–2008. [Google Scholar]
- Geraci, F.; Cooper, J.E.; Amprikidis, M. Development of smart vortex generators. In: Smart Structures and Materials 2003: Smart Structures and Integrated Systems. Proc. SPIE 2003, 5056, 1–9. [Google Scholar]
- Quackenbush, T.; McKillip, R.; Whitehouse, G. Development and Testing of Deployable Vortex Generators Using SMA Actuation. In Proceedings of the 28th AIAA Applied Aerodynamics Conference, Fluid Dynamics and Co-located Conferences, Chicago, IL, USA, 28 June–1 July 2010. [Google Scholar]
- Huang, W. On the selection of shape memory alloys for actuators. Mater. Des. 2002, 23, 11–19. [Google Scholar] [CrossRef]
- Bodaghi, M.; Damanpack, A.; Aghdam, M.; Shakeri, M. Active shape/stress control of shape memory alloy laminated beams. Compos. Part B Eng. 2014, 56, 889–899. [Google Scholar] [CrossRef]
- Dawood, M.; El-Tahan, M.; Zheng, B. Bond behavior of superelastic shape memory alloys to carbon fiber reinforced polymer composites. Compos. Part B Eng. 2015, 77, 238–247. [Google Scholar] [CrossRef]
- Kim, D.J.; Kim, H.A.; Chung, Y.-S.; Choi, E. Pullout resistance of straight NiTi shape memory alloy fibers in cement mortar after cold drawing and heat treatment. Compos. Part B Eng. 2014, 67, 588–594. [Google Scholar] [CrossRef]
- Bettini, P.; Riva, M.; Sala, G.; Di Landro, L.; Airoldi, A.; Cucco, J. Carbon fiber reinforced smart laminates with embedded SMA actuators-part I: Embedding techniques and interface analysis. J. Mater. Eng. Perform. 2009, 18, 664–671. [Google Scholar] [CrossRef]
- Qidwai, M.A.; Lagoudas, D.C. Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms. Int. J. Numer. Methods Eng. 2000, 47, 1123–1168. [Google Scholar] [CrossRef]
- Ben Jaber, M.; Smaoui, H. Analysis of Bone Staples Using an SMA Beam Finite Element Model. In Proceedings of the ICAMEM International Conference, Hammamet, Tunisia, 13–15 December 2006. [Google Scholar]
- Gao, X.; Qiao, R.; Brinson, L.C. Phase diagram kinetics for shape memory alloys: A robust finite element implementation. Smart Mater. Struct. 2007, 16, 2102–2115. [Google Scholar] [CrossRef]
- Ben Jaber, M.; Mehrez, S.; Ghazouani, O. A 1D constitutive model for shape memory alloy using strain and temperature as control variables and including martensite reorientation and asymmetric behaviors. Smart Mater. Struct. 2014, 23, 095026. [Google Scholar] [CrossRef]
- Mehrabi, R.; Kadkhodaei, M.; Ghaei, A. Numerical implementation of a thermomechanical constitutive model for shape memory alloys using return mapping algorithm and Microplane theory. Adv. Mater. Res. 2012, 516–517, 351–354. [Google Scholar] [CrossRef]
- Pinzoni, L. Progetto di un rivestimento flessibile attuato per strutture con capacità di variazione di forma. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2012. [Google Scholar]
- Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.; Airoldi, A. Carbon fiber-reinforced smart laminates with embedded SMA actuators-part II: Numerical models and empirical correlations. J. Mater. Eng. Perform. 2009, 18, 672–678. [Google Scholar] [CrossRef]
- Turner, T.L. Termomechanical Response of Shape Memory Alloy Hybrid Composites; NASA/TM-2001-210656; National Aeronautics and Space Administration: Washington, DC, USA, 2001.
As (°C) | Af (°C) | Ms (°C) | Mf (°C) | EA (GPa) | EM (GPa) |
---|---|---|---|---|---|
41.23 | 69.60 | 19.67 | 3.91 | 68 | 21 |
Temperature (°C) | E (MPa) | α (°C−1) |
---|---|---|
24 | 21,259 | 6.61 × 10−6 |
30 | 19,905 | 6.61 × 10−6 |
35 | 21,303 | −1.8777 × 10−4 |
40 | 21,483 | −5.1203 × 10−4 |
55 | 38,346 | −3.8596 × 10−4 |
60 | 43,625 | −3.0564 × 10−4 |
70 | 55,325 | −1.9657 × 10−4 |
80 | 57,519 | −1.5404 × 10−4 |
90 | 55,440 | −1.3077 × 10−4 |
110 | 58,790 | −9.0464 × 10−5 |
150 | 57,750 | −5.9532 × 10−5 |
E (MPa) | ν (-) |
---|---|
72,300 | 0.33 |
Boundary Conditions | Max Displacement (mm) |
---|---|
Without load and beam | 16.03 |
With load and beam | 11.84 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sellitto, A.; Riccio, A. Overview and Future Advanced Engineering Applications for Morphing Surfaces by Shape Memory Alloy Materials. Materials 2019, 12, 708. https://doi.org/10.3390/ma12050708
Sellitto A, Riccio A. Overview and Future Advanced Engineering Applications for Morphing Surfaces by Shape Memory Alloy Materials. Materials. 2019; 12(5):708. https://doi.org/10.3390/ma12050708
Chicago/Turabian StyleSellitto, Andrea, and Aniello Riccio. 2019. "Overview and Future Advanced Engineering Applications for Morphing Surfaces by Shape Memory Alloy Materials" Materials 12, no. 5: 708. https://doi.org/10.3390/ma12050708