Modeling of Motion Characteristics and Performance Analysis of an Ultra-Precision Piezoelectric Inchworm Motor
Abstract
:1. Introduction
2. Material
3. Simulation
3.1. Physical Field Analysis
3.1.1. Solid Mechanics
3.1.2. Nonlinear Contact Friction in Solid Mechanics
3.1.3. Electrostatics in Piezoelectric Materials
3.2. Setting of Material, Excitation and Mesh
3.2.1. Setting of Key Piezoelectric Materials and Others
3.2.2. Setting of Input Excitation
- The movement state of the non-adjacent actuation legs is the same;
- For the adjacent actuation legs, when one leg has completed all movements in one cycle, the other leg starts to follow same movements.
3.2.3. Setting of Model Mesh
4. Results and Discussion
4.1. Gesture Analysis of the Four Actuation Legs
4.2. Driving Force Analysis
4.3. Travel Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kim, S.-H.; Hwang, I.-H.; Jo, K.-W.; Yoon, E.-S.; Lee, J.-H. High-resolution inchworm linear motor based on electrostatic twisting microactuators. J. Micromech. Microeng. 2005, 15, 1674–1682. [Google Scholar] [CrossRef]
- Ho, S.-T.; Jan, S.-J. A piezoelectric motor for precision positioning applications. Precis. Eng. 2016, 43, 285–293. [Google Scholar] [CrossRef]
- Morita, T. Miniature piezoelectric motors. Sens. Actuators A Phys. 2003, 103, 291–300. [Google Scholar] [CrossRef]
- Penskiy, I.; Bergbreiter, S. Optimized electrostatic inchworm motors using a flexible driving arm. J. Micromech. Microeng. 2012, 23, 15018. [Google Scholar] [CrossRef]
- Deng, Y.-B.; Jiang, Z.; Jin, J.-M. Research on a cryogenic micro-displacement piezoelectric actuator for the radio telescope panels. In Proceedings of the 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Chengdu, China, 27–30 October 2017; pp. 490–494. [Google Scholar] [CrossRef]
- Ko, H.-P.; Jeong, H.; Koc, B. Piezoelectric actuator for mobile auto focus camera applications. J. Electroceramics 2008, 23, 530–535. [Google Scholar] [CrossRef]
- Feldmann, M.; Büttgenbach, S. Novel Microrobots and Micromotors Using Lorentz Force Driven Linear Microactuators Based on Polymer Magnets. IEEE Trans. Magn. 2007, 43, 3891–3895. [Google Scholar] [CrossRef]
- Egashira, Y.; Kosaka, K.; Takada, S.; Iwabuchi, T.; Kosaka, T.; Baba, T.; Harada, T.; Nagamoto, K.; Nakada, A.; Kubota, H. Sub-nanometer resolution ultrasonic motor for 300 mm wafer lithography precision stage. In Proceedings of the Digest of Papers. Microprocesses and Nanotechnology 2001. 2001 International Microprocesses and Nanotechnology Conference (IEEE Cat. No.01EX468), Shimane, Japan, 31 October–2 November 2002; Volume 41, pp. 252–253. [Google Scholar] [CrossRef]
- Schomburg, W.K. Introduction to Microsystem Design, 2nd ed.; Springer: Heidelberg/Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Oscillation Modes of Piezoceramic Elements, Dynamic Behavior. Available online: https://static.physikinstrumente.com/fileadmin/user_upload/pi_ceramic/files/brochure_BRO/PI_Dynamic_Behavior_Piezoceramics.pdf (accessed on 29 July 2020).
- Li, J.; Sedaghati, R.; Dargahi, J.; Waechter, D. Design and development of a new piezoelectric linear Inchworm actuator. Mechatronics 2005, 15, 651–681. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, C.; Xiao, J.; Wang, K. Design and analysis of a piezoelectric inchworm actuator. J. Micro-Bio Robot. 2014, 9, 11–21. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Liu, J.; Xu, D.; Li, K.; Shan, X.; Deng, J. A Four-Feet Walking-Type Rotary Piezoelectric Actuator with Minute Step Motion. Sensors 2018, 18, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, M.; Cheng, Y.; Zheng, D.; Peng, Y. A stick-slip/inchworm hybrid rotary piezo motor based on a symmetric triangular driving mechanism. Appl. Phys. Lett. 2019, 115, 131904. [Google Scholar] [CrossRef]
- Shao, S.; Song, S.; Chen, N.; Xu, M. Structure and control strategy for a piezoelectric inchworm actuator equipped with MEMS ridges. Sens. Actuators A Phys. 2017, 264, 40–50. [Google Scholar] [CrossRef]
- Song, S.; Shao, S.; Xu, M.; Shao, Y.; Tian, Z.; Feng, B.; Bo, F. Piezoelectric inchworm rotary actuator with high driving torque and self-locking ability. Sens. Actuators A Phys. 2018, 282, 174–182. [Google Scholar] [CrossRef]
- Tian, X.; Quan, Q.; Wang, L.; Su, Q. An Inchworm Type Piezoelectric Actuator Working in Resonant State. IEEE Access 2018, 6, 18975–18983. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Li, K.; Chen, S.; Tian, X. Development of a resonant type piezoelectric stepping motor using longitudinal and bending hybrid bolt-clamped transducer. Sens. Actuators A Phys. 2019, 285, 182–189. [Google Scholar] [CrossRef]
- Glazounov, A.; Wang, S.; Zhang, Q.-M.; Kim, C. Piezoelectric stepper motor with direct coupling mechanism to achieve high efficiency and precise control of motion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Fundamentals, Characteristics and Applications, Piezoelectric Ceramic Products. Available online: https://static.physikinstrumente.com/fileadmin/user_upload/pi_ceramic/files/catalog_CAT/PI_CAT125E_R3_Piezoelectric_Ceramic_Products.pdf (accessed on 29 July 2020).
- Components, Technologies, Operation, Piezoelectric Actuators. Available online: https://static.physikinstrumente.com/fileadmin/user_upload/pi_ceramic/files/catalog_CAT/PI_CAT128E_R3_Piezoelectric_Actuators.pdf (accessed on 29 July 2020).
- PiezoWalk® Linear Motor Operating Principle. Available online: https://youtu.be/PMmutw8N2K8 (accessed on 29 July 2020).
- P-123.01, P-143.01 and P-153.01, PICA Shear Actuators. Available online: https://static.physikinstrumente.com/fileadmin/user_upload/physik_instrumente/files/datasheets/P-111-P-153-Datasheet.pdf (accessed on 29 July 2020).
- Industrial Electromechanical Repair Services. Available online: https://www.ierservices.com/blog/what-is-the-best-material-for-an-electric-motor-shaft/ (accessed on 29 July 2020).
Flexibility Coefficient | Value (m2/N) | Strain Coefficient | Value (m/V) | Dielectric Constant | Value |
---|---|---|---|---|---|
SE11 | 1.606 × 10−11 | d33 | 3.996 × 10−10 | εrT11 | 1852 |
SE12 | −5.685 × 10−12 | d15 | 6.174 × 10−10 | εrT33 | 1751 |
SE13 | −7.454 × 10-12 | d31 | −1.867 × 10-10 | ||
SE33 | 1.909 × 10−11 | ||||
SE44 | 4.699 × 10−11 | ||||
SE66 | 4.350 × 10−11 |
Stiffness Coefficient | Value (N/m2) | Strain Coefficient | Value (N/Vm) | Dielectric Constant | Value |
---|---|---|---|---|---|
cE11 | 1.327 × 1011 | e33 | 15.68 | εrS11 | 936 |
cE12 | 8.667 × 1010 | e15 | 13.14 | εrS33 | 759 |
cE13 | 8.563 × 1010 | e31 | −6.73 | ||
cE33 | 1.192 × 1011 | ||||
cE44 | 2.128 × 1010 | ||||
cE66 | 2.299 × 1010 |
Type | Density (kg/m3) | Young’s Modulus | Poisson’s Ratio (GPa) |
---|---|---|---|
C1045 | 7890 | 200 | 0.3 |
Steel AISI 4340 | 7850 | 205 | 0.35 |
PIC255 | 7800 | - | 0.35 |
Type | m0 | m1 |
---|---|---|
P-123.01 | 5 | 10 |
P-143.01 | 6.25 | 12.5 |
P-153.01 | 11 | 20 |
Type | A × B × L (mm) | MSL (N) | Absolute Error (%) |
---|---|---|---|
P-123.01 | 5 × 5 × 7.5 | 40 | 1.50% |
P-143.01 | 10 × 10 × 7.5 | 200 | 1.65% |
P-153.01 | 16 × 16 × 15.5 | 300 | 2.78% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Fang, R.; Shi, W. Modeling of Motion Characteristics and Performance Analysis of an Ultra-Precision Piezoelectric Inchworm Motor. Materials 2020, 13, 3976. https://doi.org/10.3390/ma13183976
Zhao B, Fang R, Shi W. Modeling of Motion Characteristics and Performance Analysis of an Ultra-Precision Piezoelectric Inchworm Motor. Materials. 2020; 13(18):3976. https://doi.org/10.3390/ma13183976
Chicago/Turabian StyleZhao, Bo, Ri Fang, and Weijia Shi. 2020. "Modeling of Motion Characteristics and Performance Analysis of an Ultra-Precision Piezoelectric Inchworm Motor" Materials 13, no. 18: 3976. https://doi.org/10.3390/ma13183976