Enhanced STag Marker System: Materials and Methods for Flexible Robot Localisation
Abstract
:1. Introduction
2. Related Works
2.1. Existing Markers
2.1.1. Monochromatic with Circular Shapes
2.1.2. Monochromatic with a Matrix Base
2.1.3. Monochromatic with Hybrid Shapes
2.1.4. Chromatic
2.1.5. STag
2.2. Existing Fiducial Localisation
3. Approach
3.1. New Marker Sets
3.1.1. Customisable Hue/Greyscale (HG) Markers
Greyscale Markers
Hue Markers
3.1.2. Higher-Capacity (HC) Markers
High-Capacity Markers
High-Capacity Detection
3.1.3. Occlusion-Resilient (HO) Markers
High-Occlusion Markers
High-Occlusion Detection
3.2. Marker Fabrication
3.2.1. Outdoor-Capable and Standard Physical Markers
Paper-Based Markers
Laser-Cut Markers
3D-Printed Markers
3.2.2. Active-Material Physical Markers
Filaments
General PLA
Transparent PETG
Glow-in-the-Dark PLA
Reflect-o-Lay PLA
3.3. System Design
3.3.1. Six-DoF Marker Estimation
Camera FOV Calibration
Orientation Estimation
Depth Estimation
Pose Estimation
Stable Position Filtering
3.3.2. Off-Board/On-Board Tracking Compatibility
Marker Configuration File
Camera Localisation
Robot Localisation
3.3.3. STag ROS2 Package
4. Experiments
4.1. Assessments of Custom Markers
4.1.1. Impact of Contrast Level on Greyscale Marker Detection
4.1.2. High-Capacity Efficacy Across Varying Baseline Marker Sets
4.1.3. Occlusion Resilience for High-Occlusion Markers
4.1.4. Variation in Detection Rates Across Base Marker Sets
4.2. Assessments of Fabrication Materials
4.2.1. Assessment of Low-Light Detection for Active-Material Markers
Reflect-o-Lay
Backlit Transparent Markers
Glow in the Dark
4.3. Assessments of System Performance
4.3.1. Depth Estimation from Bounding Box
4.3.2. Incorporated Stable Position Filtering
4.3.3. Integration for Robot Localisation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lightbody, P.; Krajník, T.; Hanheide, M. An efficient visual fiducial localisation system. ACM SIGAPP Appl. Comput. Rev. 2017, 17, 28–37. [Google Scholar] [CrossRef]
- Ulrich, J.; Blaha, J.; Alsayed, A.; Rouček, T.; Arvin, F.; Krajník, T. Real Time Fiducial Marker Localisation System with Full 6 DOF Pose Estimation. ACM SIGAPP Appl. Comput. Rev. 2023, 23, 20–35. [Google Scholar] [CrossRef]
- Alam, M.S.; Gullu, A.I.; Gunes, A. Fiducial Markers and Particle Filter Based Localization and Navigation Framework for an Autonomous Mobile Robot. SN Comput. Sci. 2024, 5, 748. [Google Scholar] [CrossRef]
- Fiala, M. ARTag, a fiducial marker system using digital techniques. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 590–596. [Google Scholar]
- Krajník, T.; Nitsche, M.; Faigl, J.; Vaněk, P.; Saska, M.; Přeučil, L.; Duckett, T.; Mejail, M. A practical multirobot localization system. J. Intell. Robot. Syst. 2014, 76, 539–562. [Google Scholar] [CrossRef]
- DeGol, J.; Bretl, T.; Hoiem, D. Chromatag: A colored marker and fast detection algorithm. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1472–1481. [Google Scholar]
- Kalaitzakis, M.; Cain, B.; Carroll, S.; Ambrosi, A.; Whitehead, C.; Vitzilaios, N. Fiducial Markers for Pose Estimation. J. Intell. Robot. Syst. 2021, 101, 71. [Google Scholar] [CrossRef]
- Benligiray, B.; Topal, C.; Akinlar, C. STag: A stable fiducial marker system. Image Vis. Comput. 2019, 89, 158–169. [Google Scholar] [CrossRef]
- Calvet, L.; Gurdjos, P.; Griwodz, C.; Gasparini, S. Detection and accurate localization of circular fiducials under highly challenging conditions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 562–570. [Google Scholar]
- Ló pez de Ipin a, D.; Mendonça, P.R.; Hopper, A.; Hopper, A. TRIP: A low-cost vision-based location system for ubiquitous computing. Pers. Ubiquitous Comput. 2002, 6, 206–219. [Google Scholar] [CrossRef]
- Lightbody, P.; Krajník, T.; Hanheide, M. A versatile high-performance visual fiducial marker detection system with scalable identity encoding. In Proceedings of the Symposium on Applied Computing, Marrakech, Morocco, 4–6 April 2017; pp. 276–282. [Google Scholar]
- Bergamasco, F.; Albarelli, A.; Cosmo, L.; Rodola, E.; Torsello, A. An accurate and robust artificial marker based on cyclic codes. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2359–2373. [Google Scholar] [CrossRef]
- Sattar, J.; Bourque, E.; Giguere, P.; Dudek, G. Fourier tags: Smoothly degradable fiducial markers for use in human-robot interaction. In Proceedings of the Fourth Canadian Conference on Computer and Robot Vision (CRV’07), Montreal, QC, Canada, 28–30 May 2007; pp. 165–174. [Google Scholar]
- Mutka, A.; Miklic, D.; Draganjac, I.; Bogdan, S. A low cost vision based localization system using fiducial markers. IFAC Proc. Vol. 2008, 41, 9528–9533. [Google Scholar] [CrossRef]
- Kulich, M.; Chudoba, J.; Kosnar, K.; Krajnik, T.; Faigl, J.; Preucil, L. SyRoTek—Distance Teaching of Mobile Robotics. IEEE Trans. Educ. 2013, 56, 18–23. [Google Scholar] [CrossRef]
- Rekimoto, J. Matrix: A realtime object identification and registration method for augmented reality. In Proceedings of the 3rd Asia Pacific Computer Human Interaction (Cat. No. 98EX110), Kanagawa, Japan, 15–17 July 1998; pp. 63–68. [Google Scholar]
- Rekimoto, J.; Ayatsuka, Y. CyberCode: Designing augmented reality environments with visual tags. In Proceedings of the DARE 2000 on Designing Augmented Reality Environments, Elsinore, Denmark, 12–14 April 2000; pp. 1–10. [Google Scholar]
- Atcheson, B.; Heide, F.; Heidrich, W. Caltag: High precision fiducial markers for camera calibration. In Proceedings of the VMV, Siegen, Germany, 15–17 November 2010; Volume 10, pp. 41–48. [Google Scholar]
- Wang, B. LFTag: A scalable visual fiducial system with low spatial frequency. In Proceedings of the 2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC), Suzhou, China, 20–22 March 2020; pp. 140–147. [Google Scholar]
- Kato, H.; Billinghurst, M. Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In Proceedings of the 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR’99), San Francisco, CA, USA, 20–21 October 1999; pp. 85–94. [Google Scholar]
- Wagner, D.; Schmalstieg, D. ARToolKitPlus for Pose Tracking on Mobile Devices. In Proceedings of the Computer Vision Winter Workshop, St. Lambrecht, Austria, 6–8 February 2007; Grabner, M., Grabner, H., Eds.; Graz Technical University: St. Lambrecht, Austria, 2007. [Google Scholar]
- Olson, E. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3400–3407. [Google Scholar]
- Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Marín-Jiménez, M.J. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280–2292. [Google Scholar] [CrossRef]
- Flohr, D.; Fischer, J. A Lightweight ID-Based Extension for Marker Tracking Systems. In Proceedings of the Eurographics Symposium on Virtual Environments, Short Papers and Posters, Weimar, Germany, 15–18 July 2007; Froehlich, B., Blach, R., van Liere, R., Eds.; The Eurographics Association: Limassol, Cyprus, 2007. [Google Scholar] [CrossRef]
- Naimark, L.; Foxlin, E. Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker. In Proceedings of the International Symposium on Mixed and Augmented Reality, Darmstadt, Germany, 30 September–1 October 2002; pp. 27–36. [Google Scholar]
- van Rhijn, A.; Mulder, J.D. Optical Tracking using Line Pencil Fiducials. In Proceedings of the EGVE, Grenoble, France, 8–9 June 2004; pp. 35–44. [Google Scholar]
- Bergamasco, F.; Albarelli, A.; Torsello, A. Pi-tag: A fast image-space marker design based on projective invariants. Mach. Vis. Appl. 2013, 24, 1295–1310. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; Bencina, R. reacTIVision: A computer-vision framework for table-based tangible interaction. In Proceedings of the 1st International Conference on Tangible and Embedded Interaction, Baton Rouge, LO, USA, 15–17 February 2007; pp. 69–74. [Google Scholar]
- Kaltenbrunner, M. An Abstraction Framework for Tangible Interactive Surfaces. Ph.D. Thesis, Bauhaus-Universität Weimar, Weimar, Germany, 2018. [Google Scholar] [CrossRef]
- Prasad, M.G.; Chandran, S.; Brown, M.S. A motion blur resilient fiducial for quadcopter imaging. In Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 January 2015; pp. 254–261. [Google Scholar]
- Schweiger, F.; Zeisl, B.; Georgel, P.F.; Schroth, G.; Steinbach, E.G.; Navab, N. Maximum Detector Response Markers for SIFT and SURF. In Proceedings of the VMV, Braunschweig, Germany, 16–18 November 2009; Volume 10, pp. 145–154. [Google Scholar]
- Toyoura, M.; Aruga, H.; Turk, M.; Mao, X. Detecting markers in blurred and defocused images. In Proceedings of the 2013 International Conference on Cyberworlds, Yokohama, Japan, 21–23 October 2013; pp. 183–190. [Google Scholar]
- Mohan, A.; Woo, G.; Hiura, S.; Smithwick, Q.; Raskar, R. Bokode: Imperceptible Visual Tags for Camera Based Interaction from a Distance. In Proceedings of the ACM SIGGRAPH 2009 Papers, Yokohama, Japan, 16–19 December 2009; ACM: New York, NY, USA, 2009; pp. 1–8. [Google Scholar] [CrossRef]
- Košt’ák, M.; Slabỳ, A. Designing a simple fiducial marker for localization in spatial scenes using neural networks. Sensors 2021, 21, 5407. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, S.; Sun, H.; Qin, Y.; Wang, X. Real time tracking method by using color markers. In Proceedings of the 2013 International Conference on Virtual Reality and Visualization, Xi’an, China, 14–15 September 2013; pp. 106–111. [Google Scholar]
- Dell’Acqua, A.; Ferrari, M.; Marcon, M.; Sarti, A.; Tubaro, S. Colored visual tags: A robust approach for augmented reality. In Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, Como, Italy, 15–16 September 2005; pp. 423–427. [Google Scholar]
- Research, M. High Capacity Color Barcode (HCCB) Technology. 2007. Available online: http://research.microsoft.com/en-us/projects/hccb/ (accessed on 16 December 2024).
- Neumann, Y.C.J.L.U. A multi-ring color fiducial system and an intensity-invariant detection method for scalable fiducial-tracking augmented reality. In Proceedings of the Int’l Workshop Augmented Reality, San Francisco, CA, USA, 20–21 October 1999; pp. 147–165. [Google Scholar]
- Farkas, Z.V.; Korondi, P.; Illy, D.; Fodor, L. Aesthetic marker design for home robot localization. In Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 5510–5515. [Google Scholar]
- Higashino, S.; Nishi, S.; Sakamoto, R. ARTTag: Aesthetic fiducial markers based on circle pairs. In ACM SIGGRAPH 2016 Posters; ACM: New York, NY, USA, 2016; pp. 1–2. [Google Scholar]
- Jurado-Rodríguez, D.; Muñoz-Salinas, R.; Garrido-Jurado, S.; Medina-Carnicer, R. Design, detection, and tracking of customized fiducial markers. IEEE Access 2021, 9, 140066–140078. [Google Scholar] [CrossRef]
- Akinlar, C.; Topal, C. EDPF: A real-time parameter-free edge segment detector with a false detection control. Int. J. Pattern Recognit. Artif. Intell. 2012, 26, 1255002. [Google Scholar] [CrossRef]
- Vaughan, J. Fiducial SLAM. 2024. Available online: http://wiki.ros.org/fiducial_slam (accessed on 16 December 2024).
- Ulrich, J.; Alsayed, A.; Arvin, F.; Krajník, T. Towards fast fiducial marker with full 6 dof pose estimation. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, Virtual, 25–29 April 2022; pp. 723–730. [Google Scholar]
- Dietz, H.G. Trace2SCAD: Converting Images Into OpenSCAD Models; Technical Report; University of Kentucky: Lexington, KY, USA, 2015. [Google Scholar]
- Machado, F.; Malpica, N.; Borromeo, S. Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts. PLoS ONE 2019, 14, e0225795. [Google Scholar] [CrossRef]
- Prusa Research. PrusaSlicer. Version 2.9.4. 2024. Available online: https://www.prusa3d.com/prusaslicer/ (accessed on 16 December 2024).
- Overture 3D, Overture Glow PLA 3D Printer Filament 1.75 mm—Glow White (Green in Dark). 2024. Available online: https://overture3d.com/products/overture-glow-pla?variant=44279674732798 (accessed on 13 September 2024).
- Filament2Print. Reflect-o-Lay 3D Printing Filament. 2024. Available online: https://filament2print.com/gb/special-pla/690-reflect-o-lay.html (accessed on 2 September 2024).
- Heselden, J.R.; Das, G.P. Unified Map Handling for Robotic Systems: Enhancing Interoperability and Efficiency Across Diverse Environments. In Proceedings of the Workshop on Field Robotics, ICRA 2024, Yokohama, Japan, 17 May 2024. [Google Scholar] [CrossRef]
- Ren, Z.; Lensgraf, S.; Quattrini Li, A. Improving the perception of visual fiducial markers in the field using Adaptive Active Exposure Control. In Proceedings of the International Symposium on Experimental Robotics, Chiang Mai, Thailand, 9–12 November 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 274–284. [Google Scholar]
HD11 | HD13 | HD15 | HD17 | HD19 | HD21 | HD23 |
---|---|---|---|---|---|---|
22,335 | 2884 | 766 | 157 | 38 | 12 | 6 |
Marker Type | STag | Hue/Greyscale | High-Capacity | High-Occlusion |
---|---|---|---|---|
Image Retrieval | 0.5 | 0.5 | 0.5 | 0.5 |
Preprocessing | 0 | 0.3 | 4.1 | 0 |
STag Detection | 14.6 | 30.7 | 49.2 | 53.8 |
Post-processing | 0 | 0 | 0.8 | 38.4 |
Localisation | 0.4 | 0.4 | 0.4 | 0.2 |
Total | 15.5 | 31.9 | 55.0 | 92.9 |
Base Library | HD11 | HD13 | HD15 | HD17 | HD19 | HD21 | HD23 |
---|---|---|---|---|---|---|---|
HD | 22,335 | 2884 | 766 | 157 | 38 | 12 | 6 |
HC | 54,872 | 1728 | 216 |
Detection Success | Detection Failure | Total | |
---|---|---|---|
Baseline (HD23) | 2923 | 3077 | 6000 |
Developed (HO23) | 5360 | 640 | 6000 |
Adapted System Success | Adapted System Failure | |
---|---|---|
Baseline Success | 2887 | 36 |
Baseline Failure | 2473 | 604 |
Base | Total | Failed Detections | HD Detections | HO Detections | p-Value | |||
---|---|---|---|---|---|---|---|---|
Both | HD | HO | None | Mean ± Std. | Mean ± Std. | |||
23 | 600 | 285 | 9 | 195 | 111 | 49.0 ± 21.99 | 80.0 ± 6.51 | 1 |
21 | 1000 | 465 | 20 | 383 | 132 | 48.5 ± 38.52 | 84.8 ± 8.64 | 6 |
19 | 1000 | 162 | 2 | 620 | 216 | 16.4 ± 25.93 | 78.2 ± 15.5 | 2 |
17 | 1000 | 326 | 12 | 531 | 131 | 33.8 ± 33.69 | 85.7 ± 5.73 | 8 |
15 | 1000 | 83 | 5 | 682 | 230 | 8.8 ± 18.74 | 76.5 ± 19.50 | 3 |
13 | 1000 | 6 | 0 | 809 | 185 | 0.6 ± 0.66 | 81.5 ± 12.78 | 5 |
11 | 1000 | 1 | 1 | 844 | 154 | 0.2 ± 0.40 | 84.5 ± 10.25 | 7 |
Ground Truth Depth (m) | Estimated Depth as Mean ± Std (m) | Mean Error (m) |
---|---|---|
0.23 | 0.23 ± 0.000 | 0.00 |
0.46 | 0.44 ± 0.003 | 0.02 |
0.80 | 0.76 ± 0.004 | 0.04 |
1.09 | 1.02 ± 0.005 | 0.07 |
1.39 | 1.30 ± 0.015 | 0.09 |
1.70 | 1.62 ± 0.031 | 0.08 |
1.99 | 1.85 ± 0.004 | 0.14 |
2.29 | 2.19 ± 0.029 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heselden, J.R.; Paparas, D.; Stevenson, R.L.; Das, G.P. Enhanced STag Marker System: Materials and Methods for Flexible Robot Localisation. Machines 2025, 13, 2. https://doi.org/10.3390/machines13010002
Heselden JR, Paparas D, Stevenson RL, Das GP. Enhanced STag Marker System: Materials and Methods for Flexible Robot Localisation. Machines. 2025; 13(1):2. https://doi.org/10.3390/machines13010002
Chicago/Turabian StyleHeselden, James R., Dimitris Paparas, Robert L. Stevenson, and Gautham P. Das. 2025. "Enhanced STag Marker System: Materials and Methods for Flexible Robot Localisation" Machines 13, no. 1: 2. https://doi.org/10.3390/machines13010002
APA StyleHeselden, J. R., Paparas, D., Stevenson, R. L., & Das, G. P. (2025). Enhanced STag Marker System: Materials and Methods for Flexible Robot Localisation. Machines, 13(1), 2. https://doi.org/10.3390/machines13010002