Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An efficient visual fiducial localisation system

Published: 14 November 2017 Publication History

Abstract

With use cases that range from external localisation of single robots or robotic swarms to self-localisation in marker-augmented environments and simplifying perception by tagging objects in a robot's surrounding, fiducial markers have a wide field of application in the robotic world. We propose a new family of circular markers which allow for both computationally efficient detection, tracking and identification and full 6D position estimation. At the core of the proposed approach lies the separation of the detection and identification steps, with the former using computationally efficient circular marker detection and the latter utilising an open-ended 'necklace encoding', allowing scalability to a large number of individual markers. While the proposed algorithm achieves similar accuracy to other state-of-the-art methods, its experimental evaluation in realistic conditions demonstrates that it can detect markers from larger distances while being up to two orders of magnitude faster than other state-of-the art fiducial marker detection methods. In addition, the entire system is available as an open-source package at https://github.com/LCAS/whycon.

References

[1]
D. Afolabi, K. L. Man, H.-N. Liang, S.-U. Guan, and T. Krilavičius. 1543. monocular line tracking for the reduction of vibration induced during image acquisition. Journal of Vibroengineering, 17(2), 2015.
[2]
F. Arvin, T. Krajník, A. E. Turgut, and S. Yue. COS-φ: artificial pheromone system for robotic swarms research. In IROS. IEEE, 2015.
[3]
F. Arvin, A. E. Turgut, T. Krajník, and S. Yue. Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adaptive Behavior, 2016.
[4]
L. Batten et al. Classification of Chemical Compound Pharmacophore Structures. 1999.
[5]
W. Y. Chen and J. D. Louck. Necklaces, mss sequences, and dna sequences. Advances in applied mathematics, 18(1):18--32, 1997.
[6]
D. L. De Ipiña, P. R. S. Mendonça, and A. Hopper. TRIP: A low-cost vision-based location system for ubiquitous computing. Personal and Ubiquitous Computing, 2002.
[7]
C. Feng. Camera Marker Networks for Pose Estimation and Scene Understanding in Construction Automation and Robotics. PhD thesis, University of Michigan, 2015.
[8]
M. Fiala. Artag, an improved marker system based on artoolkit. National Research Council Canada, Publication Number: NRC, 2004.
[9]
R. Forster. Manchester encoding: opposing definitions resolved. Engineering Science & Education Journal, 9(6):278--280, 2000.
[10]
S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition, 47(6):2280--2292, 2014.
[11]
C. Hu, F. Arvin, C. Xiong, and S. Yue. A bio-inspired embedded vision system for autonomous micro-robots: the lgmd case. IEEE Transactions on Cognitive and Developmental Systems, PP(99):1--1, 2016.
[12]
T. Krajník, M. Nitsche, J. Faigl, T. Duckett, M. Mejail, and L. Přeučil. External localization system for mobile robotics. Proceedings of the 16th International Conference on Advanced Robotics (ICAR 2013), pages 1--6, 2013.
[13]
T. Krajník, M. Nitsche, J. Faigl, P. Vaněk, M. Saska, L. Přeučil, T. Duckett, and M. Mejail. A practical multirobot localization system. Journal of Intelligent & Robotic Systems, 76(3-4):539--562, 2014.
[14]
M. Kulich, J. Chudoba, K. Košnar, T. Krajník, J. Faigl, and L. Přeučil. Syrotek distance teaching of mobile robotics. IEEE Transactions on Education, 2013.
[15]
D. Lehmer. On Euler's totient function. Bulletin of the American Mathematical Society, 38(10):745--751, 1932.
[16]
P. Lightbody, T. Krajník, and M. Hanheide. A versatile high-performance visual fiducial marker detection system with scalable identity encoding. In Proceedings of the Symposium on Applied Computing, SAC '17, pages 276--282, New York, NY, USA, 2017. ACM.
[17]
R.-G. Mihalyi, K. Pathak, N. Vaskevicius, T. Fromm, and A. Birk. Robust 3d object modeling with a low-cost rgbd-sensor and ar-markers for applications with untrained end-users. Robotics and Autonomous Systems, 66:1--17, 2015.
[18]
E. Olson. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 3400--3407. IEEE, May 2011.
[19]
M. Saska, T. Baca, J. Thomas, J. Chudoba, L. Preucil, T. Krajnik, J. Faigl, G. Loianno, and V. Kumar. System for deployment of groups of unmanned micro aerial vehicles in gps-denied environments using onboard visual relative localization. Autonomous Robots, 41(4):919--944, 2017.
[20]
J. Sawada. Generating Bracelets in Constant Amortized Time. SIAM Journal on Computing, 31(1):259, 2001.
[21]
M. C. Silverman, D. Nies, B. Jung, and G. S. Sukhatme. Staying alive: a docking station for autonomous robot recharging. In Robotics and Automation, 2002. Proceedings. ICRA '02. IEEE International Conference on, volume 1, pages 1050--1055 vol.1, 2002.
[22]
P. technologies. Phoenix 3d motion capture.
[23]
A. Trachtenbert. Computational methods in coding theory. Master's thesis, University of Illinois at Urbana-Champaign, 1996.
[24]
Vicon. Vicon MX Systems.
[25]
D. Wagner and D. Schmalstieg. Artoolkitplus for pose tracking on mobile devices. In Proceedings of the 12th Computer Vision Winter Workshop (CVWW'07), February 2007.
[26]
S. Yang, S. A. Scherer, and A. Zell. An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle. Journal of Intelligent & Robotic Systems, 69(1-4):499--515, 2013.

Cited By

View all
  • (2024)Tape-Shaped, Multiscale, and Continuous-Readable Fiducial Marker for Indoor Navigation and Localization SystemsSensors10.3390/s2414460524:14(4605)Online publication date: 16-Jul-2024
  • (2024)Enhanced STag Marker System: Materials and Methods for Flexible Robot LocalisationMachines10.3390/machines1301000213:1(2)Online publication date: 24-Dec-2024
  • (2024)Experimental Evaluation of the Effectiveness of Using Visual Cues for Controlling Unmanned VehiclesScience and Transport ProgressНаука и прогресс транспорта. Вестник Днепропетровского национального университета железнодорожного транспортаНаука та прогрес транспорту10.15802/stp2024/306148(34-42)Online publication date: 12-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGAPP Applied Computing Review
ACM SIGAPP Applied Computing Review  Volume 17, Issue 3
September 2017
43 pages
ISSN:1559-6915
EISSN:1931-0161
DOI:10.1145/3161534
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 November 2017
Published in SIGAPP Volume 17, Issue 3

Check for updates

Author Tags

  1. fiducial markers
  2. necklace code
  3. swarm robotics
  4. visual tracking

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)65
  • Downloads (Last 6 weeks)5
Reflects downloads up to 11 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Tape-Shaped, Multiscale, and Continuous-Readable Fiducial Marker for Indoor Navigation and Localization SystemsSensors10.3390/s2414460524:14(4605)Online publication date: 16-Jul-2024
  • (2024)Enhanced STag Marker System: Materials and Methods for Flexible Robot LocalisationMachines10.3390/machines1301000213:1(2)Online publication date: 24-Dec-2024
  • (2024)Experimental Evaluation of the Effectiveness of Using Visual Cues for Controlling Unmanned VehiclesScience and Transport ProgressНаука и прогресс транспорта. Вестник Днепропетровского национального университета железнодорожного транспортаНаука та прогрес транспорту10.15802/stp2024/306148(34-42)Online publication date: 12-Jun-2024
  • (2024)Automated monitoring of brush use in dairy cattlePLOS ONE10.1371/journal.pone.030567119:6(e0305671)Online publication date: 25-Jun-2024
  • (2024)AeroBridge: Autonomous Drone Handoff System for Emergency Battery ServiceProceedings of the 30th Annual International Conference on Mobile Computing and Networking10.1145/3636534.3649382(573-587)Online publication date: 29-May-2024
  • (2024)A Reliable and Easily Identifiable Long-Range Fiducial Marker2024 18th International Conference on Control, Automation, Robotics and Vision (ICARCV)10.1109/ICARCV63323.2024.10821639(958-965)Online publication date: 12-Dec-2024
  • (2023)Real Time Fiducial Marker Localisation System with Full 6 DOF Pose EstimationACM SIGAPP Applied Computing Review10.1145/3594264.359426623:1(20-35)Online publication date: 1-Mar-2023
  • (2023)Federated Reinforcement Learning for Collective Navigation of Robotic SwarmsIEEE Transactions on Cognitive and Developmental Systems10.1109/TCDS.2023.323981515:4(2122-2131)Online publication date: Dec-2023
  • (2023)Mechatronic Design for Multi Robots-Insect Swarms Interactions2023 IEEE International Conference on Mechatronics (ICM)10.1109/ICM54990.2023.10102026(1-6)Online publication date: 15-Mar-2023
  • (2023) A Robot and Sensor Integration Method to Measure Fatty Acid Composition in Salmon Fillets * 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)10.1109/CASE56687.2023.10260492(1-8)Online publication date: 26-Aug-2023
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media