John von Neumann’s Space-Frequency Orthogonal Transforms
Abstract
:1. Introduction
2. Theoretical Background
2.1. Short Overview of JvNT for Discrete Time 1D Signals
2.2. JvNT for Discrete-Space 2D Signals
- if and :
- if and :
- if and :
- if and :
3. Numerical Algorithms to Implement 2D JvNT
3.1. Direct JvNT Algorithm for Real-Valued 2D Signals
Algorithm 1. Direct JvNT for 2D real-valued signals |
3.2. Inverse JvNT Algorithm for Real-Valued 2D Signals
Algorithm 2. Inverse JvNT for real-valued 2D signals |
4. Simulation Results and Discussion
4.1. Black and White Image
- for ;
- for .
4.2. Colored Image
- ;
- .
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Acronyms
{1,2,3,4}D | {one,two,three,four} dimension(s) | bw | black and white (image) |
DFT(s) | Discrete Fourier Transform(s) | dB | decibels (logarithmic scale) |
FT(s) | Fourier Transform(s) | deg | degrees (for angles) |
JvN | John von Neumann | fp | floating point (representation) |
JvNT(s) | John von Neumann Transform(s) | frFT | fractional Fourier Transform(s) |
LPF | Low-Pass Filter | mw | mother waveform/window |
RGB | Red-green-blue (image digital system) | nsc(s0 | number(s) of strongest coefficients |
SP | Signal Processing | sfa(s) | space-frequency atom(s) |
TDR | Theorem of Division with Remainder | std | standard deviation |
WFT(s) | Windowed Fourier Transform(s) | tfa(s) | time-frequency atom(s) |
References
- Oppenheim, A.V.; Schafer, R. Digital Signal Processing; Prentice Hall International Ltd.: London, UK, 1985; ISBN 0-13-214107-8. [Google Scholar]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing. Principles, Algorithms and Applications; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1996; ISBN 0-13-394338-9. [Google Scholar]
- Stefanoiu, D.; Culita, J. John von Neumann’s Time-Frequency Orthogonal Transforms. Mathematics 2023, 11, 2607. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Ramli, A.; Jassim, W.A. Shot Boundary Detection Based on Orthogonal Polynomial. Multimed. Tools Appl. 2019, 78, 20361–20382. [Google Scholar] [CrossRef]
- Sabbane, F.; Tairi, H. Watermarking Approach Based on Hermite Transform and a Sliding Window Algorithm. Multimed. Tools Appl. 2023, 82, 47635–47667. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.H.; Tang, Y.D.; Liang, M.; Shang, Y.; Wang, F.; Wang, Y. Double Image Encryption Based on Symmetry of 2D-DFT and Equal Modulus Decomposition. Multimed. Tools Appl. 2021, 80, 8973–8998. [Google Scholar] [CrossRef]
- Cohen, L. Time-Frequency Analysis; Prentice Hall: Hoboken, NJ, USA, 1995; ISBN 978-0135945322. [Google Scholar]
- Yan, L.; Piao, S.C.; Xu, F. Orthogonal Waveform Separation in Multiple-Input and Multiple-Output Imaging Sonar with Fractional Fourier Filtering. IET Radar Sonar Navig. 2021, 15, 471–484. [Google Scholar] [CrossRef]
- Ranjan, R.; Thakur, A. Image Encryption Using Discrete Orthogonal Stockwell Transform with Fractional Fourier Transform. Multimed. Tools Appl. 2023, 82, 18517–18527. [Google Scholar] [CrossRef]
- Ince, I.F.; Bulut, F.; Kilic, I.; Yildirim, M.E.; Ince, O.F. Low Dynamic Range Discrete Cosine Transform (LDR-DCT) for High-Performance JPEG Image Compression. Vis. Comput. 2022, 38, 1845–1870. [Google Scholar] [CrossRef]
- Da Silveira, T.L.T.; Canterle, D.R.; Cintra, R.J. A Class of Low-Complexity DCT-Like Transforms for Image and Video Coding. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4364–4375. [Google Scholar] [CrossRef]
- Yao, M.H.; Zheng, S.J.; Hu, Y.; Zhang, Z.; Peng, J.; Zhong, J. Single-Pixel Moving Object Classification with Differential Measuring in Transform Domain and Deep Learning. Photonics 2022, 9, 202. [Google Scholar] [CrossRef]
- Dur-e-Jabeen Khan, T.; Siddique, I.A.A.; Asghar, S. An Algorithm to Reduce Compression Ratio in Multimedia Applications. CMC-Comput. Mater. Contin. 2023, 74, 539–557. [Google Scholar] [CrossRef]
- Kumar, S.S.; Mangalam, H. Quantization Based Wavelet Transformation Technique for Digital Image Compression with Removal of Multiple Artifacts and Noises. Cluster Comput.—J. Netw. Softw. Tools Appl. 2019, 22, 11271–11284. [Google Scholar] [CrossRef]
- Fischer, S.; Sroubek, F. Self-Invertible 2D Log-Gabor Wavelets. Int. J. Comput. Vis. 2007, 75, 231–246. [Google Scholar] [CrossRef]
- Ito, I.; Egiazarian, K. Two-Dimensional Orthonormal Tree-Structured Haar Transform for Fast Block Matching. J. Imaging 2018, 4, 131. [Google Scholar] [CrossRef]
- Kazaryan, M.; Shahramanian, M.; Zabunov, S. Investigation of The Similarity Algorithm of The Satellite Images Storage System for Stability on the Basis of Haar Wavelets According to Tikhonov. Aerosp. Res. Bulg. 2019, 31, 71–90. [Google Scholar] [CrossRef]
- Armah, G.K.; Ahene, E. Application of Residue Number System (RNS) to Image Processing Using Orthogonal Transformation. In Proceedings of the IEEE International Conference on Communication Software and Networks (ICCSN), Chengdu, China, 6–7 June 2015; pp. 322–328. [Google Scholar]
- Lu, L.; Shi, B.C. Fast Algorithm of (k, k−1) Type Discrete Walsh-Haar Transformation and Application in Image Edge Detection. In Remote Sensing Image Processing, Geographic Information Systems, and Other Applications, Proceedings of the 7th Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR), Guilin, China, 4–6 November 2011; SPIE: Bellingham, WA, USA, 2011; Volume 8006, p. 80062N. [Google Scholar]
- Pratt, W.K.; Chen, W.H.; Welch, L.R. Slant Transform Image Coding. IEEE Trans. Commun. 1974, 22, 1075–1093. [Google Scholar] [CrossRef]
- Lian, Q.F.; Shen, L.X.; Xu, Y.; Yang, L. Filters of wavelets on invariant sets for image denoising. Appl. Anal. 2011, 90, 1299–1322. [Google Scholar] [CrossRef]
- Tonge, A.; Thepade, S.D. Creating Video Visual Storyboard with Static Video Summarization using Fractional Energy of Orthogonal Transforms. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 265–273. [Google Scholar] [CrossRef]
- Duris, V.; Chumarov, S.G.; Semenov, V.I. The Orthogonal Wavelets in the Frequency Domain Used for the Images Filtering. IEEE Access 2020, 9, 211125–211134. [Google Scholar] [CrossRef]
- Shin, Y.H.; Park, M.J.; Kim, J.O. Deep Orthogonal Transform Feature for Image Denoising. IEEE Access 2020, 8, 66898–66909. [Google Scholar] [CrossRef]
- Enesi, I.; Harizaj, M.; Cico, B. Implementing Fusion Technique Using Biorthogonal DWT to Increase the Number of Minutiae in Fingerprint Images. J. Sens. 2022, 2022, 3502463. [Google Scholar] [CrossRef]
- Puchala, D. Effective Lattice Structures for Separable Two-Dimensional Orthogonal Wavelet Transforms. Bull. Pol. Acad. Sci.—Tech. Sci. 2022, 70, e141005. [Google Scholar] [CrossRef]
- Forczmanski, P.; Kukharev, G.; Shchegoleva, N. Simple and Robust Facial Portraits Recognition under Variable Lighting Conditions Based on Two-Dimensional Orthogonal Transformations. In Proceedings of the 17th International Conference on Image Analysis and Processing (ICIAP), PT 1 8156, Naples, Italy, 9–13 September 2013; pp. 602–611. [Google Scholar]
- Zhu, H.Q.; Gui, Z.G.; Chen, Z.H. Discrete Fractional COSHAD Transform and Its Application. Math. Probl. Eng. 2014, 2014, 567414. [Google Scholar] [CrossRef]
- Rakheja, P.; Singh, P.; Vig, R. An Asymmetric Image Encryption Mechanism Using QR Decomposition in Hybrid Multi-Resolution Wavelet Domain. Opt. Lasers Eng. 2020, 134, 106177. [Google Scholar] [CrossRef]
- Taub, A.H. John von Neumann Collected Works (6 Volumes), Volume II: Operators, Ergodic Theory and Almost Periodic Functions in a Group; Pergamon Press Ltd.: Oxford, UK, 1961; ISBN 9780080095660. [Google Scholar]
- Daisy on Flikr. Available online: https://www.flickr.com/photos/str-le-ro/6139434734 (accessed on 22 November 2023).
- Adams, M.D.; Kossentini, F. Reversible Integer-to-Integer Wavelet Transforms for Image Compression: Performance, Evaluation and Analysis. IEEE Trans. Image Process. 2000, 9, 1010–1024. [Google Scholar] [CrossRef]
- Dalal, T.; Yadav, J. Large-Scale Orthogonal Integer Wavelet Transform Features-Based Active Support Vector Machine for Multi-Class Face Recognition. Int. J. Comput. Appl. Technol. 2023, 72, 108–124. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; SIAM—Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992; ISBN 9780898712742. [Google Scholar]
20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | Angle | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
73 | 93 | 115 | 137 | 160 | 184 | 208 | 233 | 260 | 288 | 319 | 353 | 389 | 431 | 473 | 689 | 13.12° | ||
35 | 45 | 56 | 67 | 79 | 91 | 103 | 116 | 130 | 145 | 162 | 181 | 204 | 233 | 276 | 571 | 24.76° |
Image Size | Sampling Rates | Relative Std of Error [%] | Fitness (Accuracy) [%] | Analysis Runtime [s] | Synthesis Runtime [s] | ||||
---|---|---|---|---|---|---|---|---|---|
fp | Saturated fp | Integer | fp | Saturated fp | Integer | ||||
0.7744 | 0.643 | 0.1624 | 92.81 | 93.96 | 97.75 | 282.74 | 39.79 | ||
0.9574 | 0.8642 | 0.2065 | 91.26 | 92.05 | 97.01 | 455.18 | 80.84 |
20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | Angle | Layer | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
54 | 70 | 87 | 105 | 125 | 146 | 169 | 194 | 221 | 253 | 292 | 340 | 410 | 574 | 1199 | 4082 | 15.28° | R | ||
36 | 47 | 61 | 75 | 92 | 111 | 133 | 160 | 193 | 236 | 294 | 390 | 605 | 1139 | 2623 | 8707 | 19.14° | G | ||
55 | 73 | 91 | 112 | 133 | 157 | 182 | 209 | 240 | 274 | 315 | 367 | 436 | 543 | 1031 | 4059 | 14.64° | B | ||
27 | 35 | 44 | 54 | 64 | 76 | 88 | 102 | 118 | 137 | 162 | 204 | 297 | 526 | 1185 | 4496 | 26.88° | R | ||
19 | 26 | 33 | 42 | 52 | 63 | 77 | 93 | 114 | 143 | 192 | 295 | 526 | 1083 | 2716 | 9328 | 29.80° | G | ||
29 | 38 | 48 | 58 | 70 | 82 | 95 | 109 | 125 | 145 | 170 | 203 | 250 | 362 | 887 | 4113 | 25.49° | B |
Image Size | Sampling Rates | Layer | Relative Std of Error [%] | Accuracy [%] | Analysis Runtime [s] | Synthesis Runtime [s] | ||||
---|---|---|---|---|---|---|---|---|---|---|
fp | Saturated fp | Integer | fp | Saturated fp | Integer | |||||
R | 0.8122 | 0.8032 | 0.5187 | 92.49 | 92.57 | 95.07 | 263.05 | 36.14 | ||
G | 1.1138 | 1.1121 | 0.3266 | 89.98 | 89.99 | 96.84 | 268.28 | 37.24 | ||
B | 0.9174 | 0.9024 | 0.3335 | 91.60 | 91.72 | 96.77 | 269.43 | 36.21 | ||
P | 0.9478 | 0.9393 | 0.3929 | 91.36 | 91.43 | 96.23 | 800.67 | 109.59 | ||
R | 0.9030 | 0.8953 | 0.5795 | 91.72 | 91.78 | 94.52 | 425.91 | 73.15 | ||
G | 1.0567 | 1.0552 | 0.3103 | 90.44 | 90.46 | 96.99 | 436.25 | 80.64 | ||
B | 0.8057 | 0.7900 | 0.2907 | 92.54 | 92.68 | 97.18 | 433.21 | 80.96 | ||
P | 0.9218 | 0.9135 | 0.3935 | 91.57 | 91.64 | 96.23 | 1295.37 | 234.75 |
Sampling Rates | Layer | ||||
---|---|---|---|---|---|
Accuracy [%] | Accuracy [%] | ||||
R | 4082 | 73.48 | 30,814 | 85.67 | |
G | 8707 | 84.43 | 47,479 | 91.16 | |
B | 4059 | 80.98 | 32,046 | 90.86 | |
P | 16,848 | 79.63 | 110,339 | 89.23 | |
R | 4496 | 71.58 | 35,823 | 83.98 | |
G | 9328 | 84.57 | 53,582 | 91.56 | |
B | 4113 | 81.24 | 34,458 | 91.18 | |
P | 17,937 | 79.13 | 123,863 | 88.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanoiu, D.; Culita, J. John von Neumann’s Space-Frequency Orthogonal Transforms. Mathematics 2024, 12, 767. https://doi.org/10.3390/math12050767
Stefanoiu D, Culita J. John von Neumann’s Space-Frequency Orthogonal Transforms. Mathematics. 2024; 12(5):767. https://doi.org/10.3390/math12050767
Chicago/Turabian StyleStefanoiu, Dan, and Janetta Culita. 2024. "John von Neumann’s Space-Frequency Orthogonal Transforms" Mathematics 12, no. 5: 767. https://doi.org/10.3390/math12050767