Iterative Kneser-Type Criteria for Oscillation of Half-Linear Second-Order Advanced Dynamic Equations
Abstract
:1. Introduction
- (I)
- The linear differential equation
- (II)
- The half-linear differential equation
- (III)
- The half-linear differential equation
2. Preliminaries
- (i)
- The sum is differentiable at r with
- (ii)
- For any constant , is differentiable at r with
- (iii)
- The product is differentiable at r with
- (iv)
- The quotient is differentiable at r with
3. Main Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Kac, V.; Chueng, P. Quantum Calculus; Universitext; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Elsgolts, L.E.; Norkin, S.B. Introduction to the Theory and Application of Differential Equations with Deviating Arguments; Elsevier: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Saker, S.H. Oscillation Theory of Dynamic Equations on Time Scales: Second and Third Orders; Lap Lambert Academic Publishing: Saarbrücken, Germany, 2010. [Google Scholar]
- Ohriska, J. Oscillation of second order delay and ordinary differential equations. Czech. Math. J. 1984, 34, 107–112. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second-order retarded differential equations. Math. Comput. Model. 1997, 26, 1–11. [Google Scholar] [CrossRef]
- Sun, S.; Han, Z.; Zhao, P.; Zhang, C. Oscillation for a class of second-order Emden-Fowler delay dynamic equations on time scales. Adv. Differ. Equ. 2010, 2010, 642356. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Bazighifan, O.; El-Nabulsi, E.M. Different techniques for studying oscillatory behavior of solution of differential equations. Rocky Mountain J. Math. 2021, 51, 77–86. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A note on oscillation of second-order delay differential equations. Appl. Math. Lett. 2017, 69, 126–132. [Google Scholar] [CrossRef]
- Grace, S.R.; Bohner, M.; Agarwal, R.P. On the oscillation of second-order half-linear dynamic equations. J. Differ. Equ. Appl. 2009, 15, 451–460. [Google Scholar] [CrossRef]
- Zhu, Y.R.; Mao, Z.X.; Liu, S.P.; Tian, J.F. Oscillation criteria of second-order dynamic equations on time scales. Mathematics 2021, 9, 1867. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, L.; Wang, L. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 2011, 61, 2342–2348. [Google Scholar] [CrossRef]
- Jadlovská, I. Iterative oscillation results for second-order differential equations with advanced argument. Electron. J. Differ. Equ. 2017, 2017, 1–11. [Google Scholar]
- Bohner, M.; Vidhyaa, K.S.; Thandapani, E. Oscillation of noncanonical second-order advanced differential equations via canonical transform. Constr. Math. Anal. 2022, 5, 7–13. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Frassu, S.; Viglialoro, G. Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent. Nonlinear Anal. 2021, 213, 112505. [Google Scholar] [CrossRef]
- Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Integral Equ. 2021, 34, 315–336. [Google Scholar] [CrossRef]
- Jiao, Z.; Jadlovská, I.; Li, T. Global existence in a fully parabolic attraction-repulsion chemotaxis system with singular sensitivities and proliferation. J. Differ. Equ. 2024, 411, 227–267. [Google Scholar] [CrossRef]
- Li, T.; Frassu, S.; Viglialoro, G. Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption. Z. Angew. Math. Phys. 2023, 74, 109. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T. Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 2015, 254, 408–418. [Google Scholar] [CrossRef]
- Bohner, M.; Hassan, T.S.; Li, T. Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 2018, 29, 548–560. [Google Scholar] [CrossRef]
- Bohner, M.; Li, T. Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 2014, 37, 72–76. [Google Scholar] [CrossRef]
- Bohner, M.; Li, T. Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math. 2015, 58, 1445–1452. [Google Scholar] [CrossRef]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 86. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. 2015, 38, 761–778. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Oscillation criteria for second-order dynamic equations on time scales. Appl. Math. Lett. 2014, 31, 34–40. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments. Mathematics 2021, 9, 2552. [Google Scholar] [CrossRef]
- Demidenko, G.V.; Matveeva, I.I. Asymptotic stability of solutions to a class of second-order delay differential equations. Mathematics 2021, 9, 1847. [Google Scholar] [CrossRef]
- Kneser, A. Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen. Math. Ann. 1893, 42, 409–435. [Google Scholar] [CrossRef]
- Jadlovská, I.; Džurina, J. Kneser-type oscillation criteria for second-order half-linear delay differential equations. Appl. Math. Comput. 2020, 380, 125289. [Google Scholar] [CrossRef]
- Došlý, O.; Řehák, P. Half-Linear Differential Equations; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Linear, Half-Linear Superlinear and Sublinear Dynamic Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Hassan, T.S.; Abdel Menaem, A.; Jawarneh, Y.; Iqbal, N.; Ali, A. Oscillation criterion of Kneser type for half-linear second-order dynamic equations with deviating arguments. AIMS Math. 2024, 9, 19446–19458. [Google Scholar] [CrossRef]
- Džurina, J. Oscillation of second order advanced differential equations. Electron. J. Qual. Theory Differ. Equ. 2018, 1–9. [Google Scholar] [CrossRef]
- Hassan, T.S.; Kong, Q.; El-Matary, B.M. Oscillation criteria for advanced half-linear differential equations of second order. Mathematics 2023, 11, 1385. [Google Scholar] [CrossRef]
- Hassan, T.S.; Sun, Y.; Abdel Menaem, A. Improved oscillation results for functional nonlinear dynamic equations of second order. Mathematics 2020, 8, 1897. [Google Scholar] [CrossRef]
- Hassan, T.S.; El-Nabulsi, R.A.; Abdel Menaem, A. Amended criteria of oscillation for nonlinear functional dynamic equations of second-order. Mathematics 2021, 9, 1191. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation criteria for nonlinear damped dynamic equations on time scales. Appl. Math. Comput. 2008, 203, 343–357. [Google Scholar] [CrossRef]
- Hassan, T.S. Oscillation criteria for half-linear dynamic equations on time scales. J. Math. Anal. Appl. 2008, 345, 176–185. [Google Scholar] [CrossRef]
- Hassan, T.S.; Elabbasy, E.M.; Iqbal, N.; Ali, A.; Rashedi, K.A.; Abdel Menaem, A. Oscillation criteria enhanced for advanced half-linear dynamic equations. J. Math. 2024, 2024, 1302630. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; El-Matary, B.M.; Popa, I.-L.; Mesmouli, M.B.; Odinaev, I.; Jawarneh, Y. Iterative Kneser-Type Criteria for Oscillation of Half-Linear Second-Order Advanced Dynamic Equations. Mathematics 2025, 13, 635. https://doi.org/10.3390/math13040635
Hassan TS, El-Matary BM, Popa I-L, Mesmouli MB, Odinaev I, Jawarneh Y. Iterative Kneser-Type Criteria for Oscillation of Half-Linear Second-Order Advanced Dynamic Equations. Mathematics. 2025; 13(4):635. https://doi.org/10.3390/math13040635
Chicago/Turabian StyleHassan, Taher S., Bassant M. El-Matary, Ioan-Lucian Popa, Mouataz Billah Mesmouli, Ismoil Odinaev, and Yousef Jawarneh. 2025. "Iterative Kneser-Type Criteria for Oscillation of Half-Linear Second-Order Advanced Dynamic Equations" Mathematics 13, no. 4: 635. https://doi.org/10.3390/math13040635
APA StyleHassan, T. S., El-Matary, B. M., Popa, I.-L., Mesmouli, M. B., Odinaev, I., & Jawarneh, Y. (2025). Iterative Kneser-Type Criteria for Oscillation of Half-Linear Second-Order Advanced Dynamic Equations. Mathematics, 13(4), 635. https://doi.org/10.3390/math13040635