New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations
Abstract
:1. Introduction
- the method gives usually sharp results only if ;
- the method is not capable of detecting the potential dependence of the oscillation criteria on .
2. Preliminaries and the Method Description
2.1. Definitions of the Sequences and
- for ( and ) or ( and ):
- for ( and ):
- for ( and ):
- for ( and ) or ( and ):
- for ( and ):
- for ( and ):
- 1.
- for ( and ) or ( and ), the equation
- 2.
- for ( and ), the system
- 3.
- for ( and ), the equation
2.2. The Method Description
3. Main Results
- (i)
- and ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- ;
- (vi)
- the function
- (vii)
- ;
- (viii)
- ;
- (ix)
- ;
- (x)
- ;
- (xi)
- for (, ) or (, ) and any ;for , and any ;for , and any .
- (i)n
- ;
- (ii)n
- ;
- (iii)n
- for (, ) or (, ) and any ;for (, ) and any ;for (, ) and any .
- We show by induction on n that for arbitrary and :(I)n(II)n(III)n
- (a)
- for either ( and ) or ( and ):
- (b)
- for ( and ):
- (c)
- for ( and ):
for . Clearly, in all three cases, we haveUsing (III) in (13), we see thatNow, we apply (III) in (12) and use (II) twice: once as a monotone property and then as a correponding inequality: - To prove the statement, we claim that (I) and (II) implies (i) and (ii) for . Note that (iii) is only a simple consequence of the first two parts. Clearly, (I) and (II) correspond to
- 1.
- ;
- 2.
- .
- 1.
- First, let
- 2.
- 3.
- Finally, let
4. Further Remarks, Open Problems and Research Directions
- 1.
- 2.
- neutral differential equations of the form (1) with different ranges of than those in(H5), mainly or ;
- 3.
- neutral differential equations of the form (1) with more general function , involving, e.g.,
- (a)
- mixed (delayed and advanced) neutral terms:
- (b)
- mixed (sublinear and superlinear) neutral terms
- (c)
- mixed (positive and negative) neutral terms
- 1.
- 2.
- 3.
- corresponding classes of functional difference equations (for first such extension of the approach, see the very recent contribution [57]).
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Partial neutral functional differential equations. Rev. Roum. Math. Pures Appl. 1994, 39, 339–344. [Google Scholar]
- MacDonald, N. Biological Delay Systems: Linear Stability Theory; Cambridge Studies in Mathematical Biology; Cambridge University Press: Cambridge, UK, 1989; Volume 8. [Google Scholar]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Baculíková, B.; Džurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Cesarano, C. Some new oscillation criteria for second order neutral differential equations with delayed arguments. Mathematics 2019, 7, 619. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Ruggieri, M.; Santra, S.S.; Scapellato, A. Qualitative properties of solutions of second-order neutral differential equations. Symmetry 2020, 12, 1520. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.; Jadlovská, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Sharp oscillation criteria for second-order neutral delay differential equations. Math. Methods Appl. Sci. 2020, 43, 10041–10053. [Google Scholar] [CrossRef]
- Candan, T. Oscillatory behavior of second order nonlinear neutral differential equations with distributed deviating arguments. Appl. Math. Comput. 2015, 262, 199–203. [Google Scholar] [CrossRef]
- Dong, J.G. Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments. Comput. Math. Appl. 2010, 59, 3710–3717. [Google Scholar] [CrossRef] [Green Version]
- Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation criteria for nonlinear functional neutral dynamic equations on time scales. J. Differ. Equ. Appl. 2009, 15, 1097–1116. [Google Scholar] [CrossRef]
- Fišnarová, S.; Mařík, R. Oscillation criteria for neutral second-order half-linear differential equations with applications to Euler type equations. Bound. Value Probl. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fišnarová, S.; Mařík, R. On eventually positive solutions of quasilinear second-order neutral differential equations. Abstr. Appl. Anal. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fišnarová, S. Oscillation criteria for neutral half-linear differential equations without commutativity in deviating arguments. Electron. J. Qual. Theory Differ. Equ. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Fišnarová, S.; Mařík, R. Oscillation of neutral second order half-linear differential equations without commutativity in deviating arguments. Math. Slovaca 2017, 67, 701–718. [Google Scholar] [CrossRef]
- Fišnarová, S.; Mařík, R. Oscillation of second order half-linear neutral differential equations with weaker restrictions on shifted arguments. Math. Slovaca 2020, 70, 389–400. [Google Scholar] [CrossRef]
- Grace, S.R.; Džurina, J.; Jadlovská, I.; Li, T. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequalities Appl. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Li, T.; Sun, S.; Sun, Y. Remarks on the paper [Appl. Math. Comput. 207 (2009) 388–396]. Appl. Math. Comput. 2010, 215, 3998–4007. [Google Scholar] [CrossRef]
- Li, T.; Thandapani, E.; Graef, J.R.; Tunç, E. Oscillation of second-order Emden-Fowler neutral differential equations. Nonlinear Stud. 2013, 20, 1–8. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation of second-order neutral differential equations. Math. Nachrichten 2015, 288, 1150–1162. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations. Monatshefte FÜR Math. 2017, 184, 489–500. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Han, Z. New oscillation criterion for Emden–Fowler type nonlinear neutral delay differential equations. J. Appl. Math. Comput. 2019, 60, 191–200. [Google Scholar] [CrossRef]
- Liu, L.; Bai, Y. New oscillation criteria for second-order nonlinear neutral delay differential equations. J. Comput. Appl. Math. 2009, 231, 657–663, Erratum to: J. Comput. Appl. Math. 2010, 233, 2755. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Meng, F.; Liu, P. Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation. Appl. Math. Comput. 2012, 219, 2739–2748. [Google Scholar] [CrossRef]
- Mařík, R. Remarks on the paper by Sun and Meng, Appl. Math. Comput. 174 (2006). Appl. Math. Comput. 2014, 248, 309–313. [Google Scholar] [CrossRef]
- Moaaz, O.; Anis, M.; Baleanu, D.; Muhib, A. More effective criteria for oscillation of second-order differential equations with neutral arguments. Mathematics 2020, 8, 986. [Google Scholar] [CrossRef]
- Meng, F.; Xu, R. Oscillation criteria for certain even order quasi-linear neutral differential equations with deviating arguments. Appl. Math. Comput. 2007, 190, 458–464. [Google Scholar] [CrossRef]
- Moaaz, O. New criteria for oscillation of nonlinear neutral differential equations. Adv. Differ. Equ. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden–Fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Lett. 2021, 118, 107172. [Google Scholar] [CrossRef]
- Pátíková, Z.; Fišnarová, S. Use of the Modified Riccati Technique for Neutral Half-Linear Differential Equations. Mathematics 2021, 9, 235. [Google Scholar] [CrossRef]
- Santra, S.S.; Nofal, T.A.; Alotaibi, H.; Bazighifan, O. Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations. Axioms 2020, 9, 136. [Google Scholar] [CrossRef]
- Tripathy, A.K.; Santra, S.S. Necessary and sufficient conditions for oscillation of second-order differential equations with nonpositive neutral coefficients. Math. Bohem. 2021, 146, 185–197. [Google Scholar] [CrossRef]
- Tunç, E.; Kaymaz, A. On oscillation of second-order linear neutral differential equations with damping term. Dyn. Syst. Appl. 2019, 28, 289–301. [Google Scholar]
- Tunç, E.; Özdemir, O. On the oscillation of second-order half-linear functional differential equations with mixed neutral term. J. Taibah Univ. Sci. 2019, 13, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yu, Y.; Zhang, J.; Xiao, J. Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type. J. Inequalities Appl. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Meng, F. Some new oscillation criteria for second order quasi-linear neutral delay differential equations. Appl. Math. Comput. 2006, 182, 797–803. [Google Scholar] [CrossRef]
- Xu, R.; Meng, F. New Kamenev-type oscillation criteria for second order neutral nonlinear differential equations. Appl. Math. Comput. 2007, 188, 1364–1370. [Google Scholar] [CrossRef]
- Xu, R.; Meng, F. Oscillation criteria for second order quasi-linear neutral delay differential equations. Appl. Math. Comput. 2007, 192, 216–222. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Wang, Q.R. Oscillation of second-order nonlinear neutral dynamic equations on time scales. Appl. Math. Comput. 2010, 216, 2837–2848. [Google Scholar] [CrossRef]
- Džurina, J.; Stavroulakis, I.P. Oscillation criteria for second-order delay differential equations. Appl. Math. Comput. 2003, 140, 445–453. [Google Scholar] [CrossRef]
- Sun, Y.G.; Meng, F.W. Note on the paper of Džurina and Stavroulakis: “Oscillation criteria for second-order delay differential equations” [Appl. Math. Comput. 140 (2003), 445–453]. Appl. Math. Comput. 2006, 174, 1634–1641. [Google Scholar] [CrossRef]
- Wu, H.; Erbe, L.; Peterson, A. Oscillation of solution to second-order half-linear delay dynamic equations on time scales. Electron. J. Differ. Equ. 2016, 2016, 1–15. [Google Scholar]
- Jadlovská, I.; Džurina, J. Kneser-type oscillation criteria for second-order half-linear delay differential equations. Appl. Math. Comput. 2020, 380, 125289. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments. Appl. Math. Comput. 2021, 397, 125915. [Google Scholar]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for half-linear delay dynamic equations on time scales. Nonlinear Dyn. Syst. Theory 2009, 9, 51–68. [Google Scholar]
- Baculíková, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Li, T.; Han, Z.; Zhang, C.; Sun, S. On the oscillation of second-order Emden-Fowler neutral differential equations. J. Appl. Math. Comput. 2011, 37, 601–610. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V.; Zhang, C. Oscillation of second-order neutral differential equations. Funkcial. Ekvac. 2013, 56, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Rogovchenko, Y.V.; Zhang, C. Oscillation results for second-order nonlinear neutral differential equations. Adv. Differ. Equ. 2013, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Xu, Z. Oscillation criteria for second order quasilinear neutral delay differential equations. Appl. Math. Comput. 2009, 207, 388–396. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. 2015, 38, 761–778. [Google Scholar] [CrossRef]
- Jadlovská, I. Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations. Appl. Math. Lett. 2020, 106, 106354. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. A sharp oscillation criterion for second-order half-linear advanced differential equations. Acta Math. Hung. 2021, 163, 552–562. [Google Scholar] [CrossRef]
- Graef, J.R.; Jadlovská, I.; Tunç, E. Sharp asymptotic results for third-order linear delay differential equations. J. Appl. Anal. Comput. 2021. to appear. [Google Scholar]
- Jadlovská, I.; Chatzarakis, G.E.; Džurina, J.; Grace, S.R. On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations. Mathematics 2021, 9, 1675. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Shi, S.; Han, Z. A new approach to the oscillation for the difference equations with several variable advanced arguments. J. Appl. Math. Comput. 2021, 2021, 1–14. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T. Oscillatory behavior of second-order half-linear damped dynamic equations. Appl. Math. Comput. 2015, 254, 408–418. [Google Scholar] [CrossRef]
- Bohner, M.; Hassan, T.S.; Li, T. Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indag. Math. 2018, 29, 548–560. [Google Scholar] [CrossRef]
- Erbe, L.; Peterson, A.; Saker, S.H. Oscillation criteria for second-order nonlinear dynamic equations on time scales. J. Lond. Math. Soc. 2003, 67, 701–714. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.H.; Wang, Q.R.; Zhou, Z. Oscillation criteria for second order nonlinear delay dynamic equations on time scales. Appl. Math. Comput. 2015, 269, 834–840. [Google Scholar] [CrossRef]
- Hassan, T.S.; El-Nabulsi, R.A.; Abdel Menaem, A. Amended Criteria of Oscillation for Nonlinear Functional Dynamic Equations of Second-Order. Mathematics 2021, 9, 1191. [Google Scholar] [CrossRef]
- Hassan, T.S.; Sun, Y.; Menaem, A.A. Improved Oscillation Results for Functional Nonlinear Dynamic Equations of Second Order. Mathematics 2020, 8, 1897. [Google Scholar] [CrossRef]
- Saker, S.H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comput. Appl. Math. 2006, 187, 123–141. [Google Scholar] [CrossRef] [Green Version]
- Saker, S.H.; Agarwal, R.P.; O’regan, D. Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Appl. Anal. 2007, 86, 1–17. [Google Scholar] [CrossRef]
- Saker, S.; Sethki, A. Riccati Technique and Oscillation of Second Order Nonlinear Neutral Delay Dynamic Equations. J. Comput. Anal. Appl. 2021, 2021, 266. [Google Scholar]
- Shi, Y.; Han, Z.; Sun, Y. Oscillation criteria for a generalized Emden-Fowler dynamic equation on time scales. Adv. Differ. Equ. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sui, Y.; Han, Z. Oscillation of second order neutral dynamic equations with deviating arguments on time scales. Adv. Differ. Equ. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadlovská, I. New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations. Mathematics 2021, 9, 2089. https://doi.org/10.3390/math9172089
Jadlovská I. New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations. Mathematics. 2021; 9(17):2089. https://doi.org/10.3390/math9172089
Chicago/Turabian StyleJadlovská, Irena. 2021. "New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations" Mathematics 9, no. 17: 2089. https://doi.org/10.3390/math9172089
APA StyleJadlovská, I. (2021). New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations. Mathematics, 9(17), 2089. https://doi.org/10.3390/math9172089