Study of Sputtered ITO Films on Flexible Invar Metal Foils for Curved Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jamal, M.S.; Bashar, M.S.; Mahmud Hasan, A.K.; Almutairi, Z.A.; Alharbi, H.F.; Alharthi, N.H.; Karim, M.R.; Misran, H.; Amin, N.; Sopian, K.B.; et al. Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review. Renew. Sustain. Energy Rev. 2018, 98, 469–488. [Google Scholar] [CrossRef]
- Stranks, S.D.; Snaith, H.J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402. [Google Scholar] [CrossRef]
- Li, J.; Jiu, T.; Duan, C.; Wang, Y.; Zhang, H.; Jian, H.; Zhao, Y.; Wang, N.; Huang, C.; Li, Y. Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy 2018, 46, 331–337. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Wang, H.; Bi, S.; Zhou, J.; Qin, L.; Qiu, X.; Zhao, Z.; Xu, Y.; Zhang, Y.; Shi, X.; Zhou, H.; Zhiyong, T. A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells. Adv. Mater. 2018, 30, 1706924. [Google Scholar] [CrossRef]
- Bu, T.; Li, J.; Zheng, F.; Chen, W.; Wen, X.; Ku, Z.; Peng, Y.; Zhong, J.; Cheng, Y.B.; Huang, F. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 2018, 9, 4609. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.I.; Zhang, J.; Wang, H.; Lund, P.D. Device stability of perovskite solar cells—A review. Renew. Sustain. Energy Rev. 2017, 77, 131–146. [Google Scholar] [CrossRef]
- Giacomo, F.D.; Fakharuddin, A.; Jose, R.; Brown, T.M. Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 2016, 9, 3007–3035. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.S.; Yang, W.S.; Noh, J.H.; Suk, J.H.; Jeon, N.J.; Park, J.H.; Kim, J.S.; Seong, W.M.; Seok, S.I. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 2015, 6, 7410. [Google Scholar] [CrossRef] [PubMed]
- Zardetto, V.; Brown, T.M.; Reale, A.; Carlo, A.D. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical temperature, and solvent resistance properties. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 638–648. [Google Scholar] [CrossRef]
- Burrows, P.E.; Graff, G.L.; Gross, M.E.; Martin, P.M.; Shi, M.K.; Hall, M.; Mast, E.; Bonham, C.; Bennett, W.; Sullivan, M.B. Ultra barrier flexible substrates for flat panel displays. Displays 2001, 22, 65–69. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; Jung, G.H.; Lee, I.; Kim, S.; Ham, J.; Dong, W.J.; Hong, K.; Lee, J.L. Extremely flat metal films implemented by surface roughness transfer for flexible electronics. RSC Adv. 2018, 8, 10883–10888. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Lu, Y.; Singer, D.W.; Berck, M.E.; Somers, L.A.; Goldsmith, B.R.; Charlie Johnson, A.T. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 2011, 23, 1441–1447. [Google Scholar] [CrossRef]
- Calabrese, G.; Pettersen, S.V.; Pfüller, C.; Ramsteiner, M.; Grepstad, J.K.; Brandt, O.; Geelhaar, L.; Fernandez-Garrido, S. Effect of surface roughness, chemical composition, and native oxide crystallinity of the orientation of self-assembled GaN nanowires on Ti foils. Nanotechnology 2017, 28, 425602. [Google Scholar] [CrossRef]
- Hong, K.; Yu, H.K.; Lee, I.; Kim, S.; Kim, Y.; Kim, K.; Lee, J.L. Flexible top-emitting organic light emitting diodes with a functional dielectric reflector on a metal foil substrate. RSC Adv. 2018, 8, 26156–26160. [Google Scholar] [CrossRef]
- Cheon, J.H.; Choi, J.H.; Hur, J.H.; Jang, J.; Shin, H.S.; Jeong, J.K.; Mo, Y.G.; Chung, H.K. Active-matrix OLED on bendable metal foil. IEEE Trans. Electron Devices 2006, 53, 1273–1276. [Google Scholar] [CrossRef]
- Kim, M.; Kim, K.B.; Jeon, C.W.; Lee, D.; Lee, S.N.; Lee, J.M.; Lee, H.C. CIGS solar cell devices on steel substrates coated with Na containing AIPO4. J. Phys. Chem. Solids 2015, 86, 223–228. [Google Scholar] [CrossRef]
- Kim, K.B.; Kim, M.; Lee, H.C.; Park, S.W.; Jeon, C.W. Copper indium gallium selenide (CIGS) solar cell devices on steel substrates coated with thick SiO2-based insulating material. Mater. Res. Bull. 2017, 85, 168–175. [Google Scholar] [CrossRef]
- Kim, K.B.; Kim, M.; Baek, J.; Park, Y.J.; Lee, J.R.; Kim, J.S.; Jeon, C. Influence of Cr thin films on the properties of flexible CIGS solar cells on steel substrates. Electron. Mater. Lett. 2014, 10, 247–251. [Google Scholar] [CrossRef]
- Si, P.Z.; Choi, C.J. High hardness nanocrystalline invar alloys prepared from Fe-Ni nanoparticles. Metals 2018, 8, 28. [Google Scholar] [CrossRef]
- Herz, K.; Eicke, A.; Kessler, F.; Wächter, R.; Powalla, M. Diffusion barrier for CIGS solar cells on metallic substrates. Thin Solid Films 2003, 431–432, 392–397. [Google Scholar] [CrossRef]
- Batchelor, W.K.; Repins, I.L.; Schaefer, J.; Beck, M.E. Impact of substrate roughness on CuInxGa1−xSe2 device properties. Sol. Energy Mater. Sol. Cells 2004, 83, 67–80. [Google Scholar] [CrossRef]
- Platzer-Björkman, C.; Jani, S.; Westlinder, J.; Linnarsson, M.K.; Scragg, J.; Edoff, M. Diffusion of Fe and Na in co-evaporated Cu(In,Ga)Se2 devices on steel substrates. Thin Solid Films 2013, 535, 188–192. [Google Scholar] [CrossRef]
- Heo, J.H.; Shin, D.H.; Lee, M.L.; Kang, M.G.; Im, S.H. Efficient organic-inorganic hybrid flexible perovskite solar cells prepared by lamination of polytriarylamine/CH3NH3PbI3/anodized Ti metal substrate and graphene/PDMS transparent electrode substrate. ACS Appl. Mater. Interfaces 2018, 10, 31413–31421. [Google Scholar] [CrossRef] [PubMed]
- Suyama, T.; Bae, H.; Setaka, K.; Ogawa, H.; Fukuoka, Y.; Suzuki, H.; Toyoda, H. Quantitative evaluation of high-energy O-ion particle flux in a DC magnetron sputter plasma with an indium-tin-oxide target. J. Phys. D Appl. Phys. 2017, 50, 445201. [Google Scholar] [CrossRef]
- Lee, K.Y.; Chen, L.C.; Wu, Y.J. Effect of oblique-angle sputtered ITO electrode in MAPbI3 perovskite solar cell structures. Nanoscale Res. Lett. 2017, 12, 556. [Google Scholar] [CrossRef]
- Kim, J.H.; Seong, T.Y.; Ahn, K.J.; Chung, K.B.; Seok, H.J.; Seo, H.J.; Kim, H.K. The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtering ITO films. Appl. Surf. Sci. 2018, 440, 1211–1218. [Google Scholar] [CrossRef]
- Kim, J.H.; Seok, H.J.; Seo, H.J.; Seong, T.Y.; Heo, J.H.; Lim, S.H.; Ahn, K.J.; Kim, H.K. Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells. Nanoscale 2018, 10, 20587–20598. [Google Scholar] [CrossRef]
- Akman, E.; Cerkezoglu, E. Compositional and micro-scratch analyses of laser induced colored surface of titanium. Opt. Lasers Eng. 2016, 84, 37–43. [Google Scholar] [CrossRef]
- Pérez del Pino, A.; Fernández-Pradas, J.M.; Serra, P.; Morenza, J.L. Coloring of titanium through laser oxidation: Comparative study with anodizing. Surf. Coat. Technol. 2004, 187, 106–112. [Google Scholar] [CrossRef]
- Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 1976, 47, 4086–4089. [Google Scholar] [CrossRef]
- Kim, H.; Horwitz, J.S.; Kushto, G.; Piqué, A.; Kafafi, Z.H.; Gilmore, C.M.; Chrisey, D.B. Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 2000, 88, 6021–6025. [Google Scholar] [CrossRef]
- Lee, J.H.; Shin, H.S.; Na, S.I.; Kim, H.K. Transparent and flexible PEDOT:PSS electrodes passivated by thin IZTO film using plasma-damage free linear facing target sputtering for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 2013, 109, 192–198. [Google Scholar] [CrossRef]
Substrate | Sheet Resistance (Rs) (Ohm/square) | |||
---|---|---|---|---|
50 nm | 100 nm | 150 nm | 200 nm | |
Invar | 75.54 | 54.74 | 50.21 | 44.57 |
Glass | 77.64 | 53.30 | 49.51 | 44.52 |
Substrate | Average Transmittance (400–800 nm) (%) | |||
---|---|---|---|---|
50 nm | 100 nm | 150 nm | 200 nm | |
Glass | 86.23 | 86.12 | 88.73 | 87.01 |
ITO Thickness (nm) | VOC (V) | JSC (mA/cm2) | Fill Factor (FF, %) | Power Conversion Efficiency (PCE, %) |
---|---|---|---|---|
150 | 1.11 | 18.12 | 47.0 | 9.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seok, H.-J.; Kim, H.-K. Study of Sputtered ITO Films on Flexible Invar Metal Foils for Curved Perovskite Solar Cells. Metals 2019, 9, 120. https://doi.org/10.3390/met9020120
Seok H-J, Kim H-K. Study of Sputtered ITO Films on Flexible Invar Metal Foils for Curved Perovskite Solar Cells. Metals. 2019; 9(2):120. https://doi.org/10.3390/met9020120
Chicago/Turabian StyleSeok, Hae-Jun, and Han-Ki Kim. 2019. "Study of Sputtered ITO Films on Flexible Invar Metal Foils for Curved Perovskite Solar Cells" Metals 9, no. 2: 120. https://doi.org/10.3390/met9020120