Study on the Activation of Scheelite and Wolframite by Lead Nitrate
Abstract
:1. Introduction
2. Materials and Experimental Section
2.1. Single Minerals
2.2. Micro Flotation Tests
2.3. Zeta Potential Measurements
2.4. X-Ray Photoelectron Spectroscopy (XPS)
3. Computational
4. Results and Discussion
4.1. Micro Flotation
4.2. Electrokinetic Study
4.3. XPS of Mineral Samples
Sample | O | W | Ca | Pb | Total | - | - |
---|---|---|---|---|---|---|---|
scheelite | 67.58% | 15.62% | 16.81% | - | 100% | - | - |
scheelite + lead nitrate | 68.16% | 15.05% | 14.98% | 1.81% | 100% | - | - |
Sample | O | W | Ca | Mn | Fe | Pb | Total |
wolframite | 68.65% | 12.96% | 1.79% | 12.36% | 4.22% | - | 100% |
wolframite + lead nitrate | 68.61% | 11.52% | 1.29% | 11.27% | 4.44% | 2.86% | 100% |
Samples | Atom Orbits | Binding Energy | |
---|---|---|---|
Before Adsorption | After Adsorption | ||
Scheelite | Ca 2p | 346.89 | 346.89 |
O 1s | 530.29 | 530.39 | |
W 4f | 35.19 | 35.29 | |
Wolframite | Mn 2p | 640.59 | 640.49 |
Fe 2p | 710.79 | 710.89 | |
O 2p | 530.49 | 530.39 | |
W 4f | 35.39 | 35.29 |
4.4. Computational Results
4.4.1. Structure Properties of Benzohydroxamic Acid
Tautomer | Molecule | Anion |
---|---|---|
keto form | −476.262 | −475.786 |
oxime form | −476.256 | −475.778 |
4.4.2. Binding Model of BHA with Metal Ions
4.4.3. Mulliken Charge and Binding Energy
Species | O1 | O2 | Metal Ions |
---|---|---|---|
BHA anion | −0.753 | −0.557 | - |
BHA-Ca(OH) | −0.758 | −0.464 | 1.681 |
BHA-Mn(OH) | −0.517 | −0.327 | 1.053 |
BHA-Fe(OH) | −0.431 | −0.214 | 0.927 |
BHA-Pb(OH) | −0.428 | −0.202 | 0.785 |
Species | BHA-Ca(OH) | BHA-Mn(OH) | BHA-Fe(OH) | BHA-Pb(OH) |
---|---|---|---|---|
Hydroxyl metal ions Energy/a.u. | −753.396 | −1226.511 | −1339.220 | −79.176 |
System Energy/a.u. | −1229.11 | −1702.22 | −1814.95 | −554.925 |
Binding Energy/(kJ/mol) | −105.02 | −118.15 | −152.28 | −210.04 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kirjavainen, V.; Schreithofer, N.; Heiskanen, K. Effect of calcium and thiosulfate ions on flotation selectivity of nickel–copper ores. Miner. Eng. 2002, 15, 1–5. [Google Scholar] [CrossRef]
- Finkelstein, N.P. The activation of sulphide minerals for flotation: A review. Int. J. Miner. Process. 1997, 52, 81–120. [Google Scholar]
- Fan, X.; Rowson, N.A. The effect of Pb(NO3)2 on ilmenite flotation. Miner. Eng. 2000, 13, 205–215. [Google Scholar] [CrossRef]
- Buglyó, P.; Eszter Márta Nagya, E.M.; Farkasa, E.; Sóvágóa, I.; Sannab, D.; Micera, G. New insights into the metal ion–peptide hydroxamate interactions: Metal complexes of primary hydroxamic acid derivatives of common dipeptides in aqueous solution. Polyhedron 2007, 26, 1625–1633. [Google Scholar] [CrossRef]
- Griffith, D.M.; Szőcs, B.; Keogh, T.; Suponitsky, K.Y.; Farkas, E.; Buglyó, P.; Marmion, C.J. Suberoylanilide hydroxamic acid, a potent histone deacetylase inhibitor; its X-ray crystal structure and solid state and solution studies of its Zn(II), Ni(II), Cu(II) and Fe(III) complexes. J. Inorg. Biochem. 2011, 105, 763–769. [Google Scholar]
- Šille, J.; Šramko, M.; Garaj, V.; Remko, M. Gas phase and solution state stability of complexes L…M, where M = Cu2+, Ni2+, or Zn2+ and L = R−C(O)NHOH (R = H, NH2, CH3, CF3, or Phenyl). J. Mol. Struct. Theochem 2009, 911, 137–143. [Google Scholar] [CrossRef]
- Ali, O.Y.; Fridgen, T.D. Structures of electrosprayed Pb(Uracil-H)+ complexes by infrared multiple photon dissociation spectroscopy. Int. J. Mass Spectrom. 2011, 308, 167–174. [Google Scholar] [CrossRef]
- Chen, W.X.; Ye, Z.P. Study on wolframite flotation activated by lead nitrate. J. Guangdong Non-ferr. Met. 1999, 9, 13–17. [Google Scholar]
- Zhong, C.G.; Gao, Y.D.; Qiu, X.Y.; Feng, Q.M. The effects of metal ions on wolframite flotation with benzohydroxamic acid. China Tungsten Ind. 2013, 28, 22–25. [Google Scholar]
- Xia, Q.B.; Li, Z.; Qiu, X.Y.; Dai, Z.L. Quantum chemical study on benzyhydroxamic acid flotation agent. Min. Metall. Eng. 2004, 24, 30–33. [Google Scholar]
- Zhao, G.; Zhong, H.; Qiu, X.Y.; Wang, S.; Gao, Y.D.; Dai, Z.L.; Huang, J.P.; Liu, G.Y. The DFT study of cyclohexyl hydroxamic acid as a collector in scheelite flotation. Miner. Eng. 2013, 49, 54–60. [Google Scholar] [CrossRef]
- Perales, R.L.; Errandonea, D.; Segura, A.; Fuertes, J.R.; Hernandez, P.R.; Radescu, S.; Solano, J.L.; Mujica, A.; Munoz, A. A combined high-pressure experimental and theoretical study of the electronic band-structure of scheelite-type AWO4 (A = Ca, Sr, Ba, Pb) compounds. J. Appl. Phys. 2011, 110. [Google Scholar] [CrossRef]
- Fuertes, J.R.; Moreno, S.L.; Solano, J.L.; Errandonea, D.; Segura, A.; Perales, R.L.; Munoz, A.; Radescu, S.; Hernandez, P.R.; Gospodinov, M.; et al. Pressure effects on the electronic and optical properties of AWO4 wolframites (A = Cd, Mg, Mn, and Zn): The distinctive behavior of multiferroic MnWO4. Phys. Rev. B 2012, 86. [Google Scholar] [CrossRef]
- Gece, G.; Bilgiç, S. A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel. Corros. Sci. 2010, 52, 3304–3308. [Google Scholar] [CrossRef]
- Liu, G.Y.; Zeng, H.B.; Lu, Q.Y.; Zhong, H.; Choi, P.; Xu, Z.H. Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces: A density functional theory study of structure–reactivity relations. Colloids Surf. A 2012, 409, 1–9. [Google Scholar] [CrossRef]
- Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007, 47, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.Y.; Cheng, D.M.; Wang, D.Z. Reaction mechanism between benzoylhydroxamic acid and scheelite. Min. Metall. Eng. 2001, 21, 39–42. [Google Scholar]
- Etelka, F.; David, B.; Edit, C.; Peter, B.; Wolfgang, H.; Daniele, S. Synthesis and characterization of Cu2+, Ni2+ and Zn2+ binding capability of some amino- and imidazole hydroxamic acids: Effects of substitution of side chain amino-N for imidazole-N or hydroxamic-N-CH3 on metal complexation. Polyhedron 2007, 26, 543–554. [Google Scholar] [CrossRef]
- Jin, H.A.; Li, B.D. Activation mechanism of metal cation in wolframite flotation. Nonferr. Met. 1980, 32, 46–55. [Google Scholar]
- Mulliken, R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Csizmadia, I.G. Theory and Practice of MO Calculations on Organic Molecules; Elsevier: Amsterdam, The Netherland, 1976. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Wang, S.; Zhong, H. Study on the Activation of Scheelite and Wolframite by Lead Nitrate. Minerals 2015, 5, 247-258. https://doi.org/10.3390/min5020247
Zhao G, Wang S, Zhong H. Study on the Activation of Scheelite and Wolframite by Lead Nitrate. Minerals. 2015; 5(2):247-258. https://doi.org/10.3390/min5020247
Chicago/Turabian StyleZhao, Gang, Shuai Wang, and Hong Zhong. 2015. "Study on the Activation of Scheelite and Wolframite by Lead Nitrate" Minerals 5, no. 2: 247-258. https://doi.org/10.3390/min5020247