Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis
Abstract
:1. Introduction
2. Models and Computational Details
2.1. Main Methods and Software
2.2. Models of Initial Water-Free Crystal Structures
2.3. Model of Water/Ice Clusters
2.4. Estimation of Interaction Energy of Water/Ice Cluster and PNT
2.5. Semi-Empirical Calculations
3. Results and Discussions
3.1. Determination of the Optimal Number of Water Molecules in the PNT Cavity
3.2. Water Cluster Structures Details
3.3. Polarization Details
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Calvin, M. Chemical Evolution. Molecular Evolution, towards the Origin of Living System on the Earth and Elsewhere; Claredon: Oxford, UK, 1969. [Google Scholar]
- Pachahara, S.K.; Subbalakshmi, C.; Nagaraj, R. Formation of nanostructures by peptides. Curr. Protein Pept. Sci. 2017, 18, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Aryaa, S.K.; Solankia, P.R.; Dattab, M.; Malhotra, B.D. Recent advances in self-assembled monolayers based biomolecular electronic devices. J. Biosens. Bioelectron. 2009, 24, 2810–2817. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.C.; Baran, E.T.; Reis, R.L.; Azevedo, H.S. Self-assembly in nature: Using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 582–612. [Google Scholar] [CrossRef]
- Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 2016, 116, 13752–13990. [Google Scholar] [CrossRef] [PubMed]
- Tverdislov, V.A. Chirality as a primary switch of hierarchical levels in molecular biological systems. Biophysics 2013, 58, 128–132. [Google Scholar] [CrossRef]
- Tverdislov, V.A.; Malyshko, E.V.; Il’chenko, S.A.; Zhulyabina, O.A.; Yakovenko, L.V. A periodic system of chiral structures in molecular biology. Biophysics 2017, 62, 331–341. [Google Scholar] [CrossRef]
- Naaman, R.; Waldeck, D.H. Spintronics and chirality: Spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 2015, 66, 263–281. [Google Scholar] [CrossRef]
- Burgess, N.C.; Sharp, T.H.; Thomas, F.; Wood, C.W.; Thomson, A.R.; Zaccai, N.R.; Brady, R.L.; Serpell, L.C.; Woolfson, D.N. Modular Design of Self-Assembling Peptide-Based Nanotubes. J. Am. Chem. Soc. 2015, 137, 10554–10562. [Google Scholar] [CrossRef] [Green Version]
- Fleming, S.; Ulijn, R.V. Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev. 2014, 43, 8150–8177. [Google Scholar] [CrossRef]
- Smith, K.H.; Tejeda-Montes, E.; Poch, M.; Mata, A. Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials. Chem. Soc. Rev. 2011, 40, 4563–4577. [Google Scholar] [CrossRef]
- Silva, R.F.; Araújo, D.R.; Silva, E.R.; Ando, R.A.; Alves, W.A. L-diphenylalanine microtubes as apotential drug-delivery system: Characterization, release kinetics, and cytotoxicity. Langmuir 2013, 29, 10205–10212. [Google Scholar] [CrossRef] [PubMed]
- Emtiazi, G.; Zohrabi, T.; Lee, L.Y.; Habibi, N.; Zarrabi, A. Covalent diphenylalanine peptide nanotube conjugated to folic acid/magnetic nanoparticles for anti-cancer drug delivery. J. Drug Deliv. Sci. Technol. 2017, 41, 90–98. [Google Scholar] [CrossRef]
- Orsi, M. Molecular simulation of self-assembly. In Self-Assembling Biomaterials. Molecular Design, Characterization and Application in Biology and Medicine, 1st ed.; Azevedo, H.S., da Silva, R.M.P., Eds.; Woodhead Publishing Series in Biomaterials; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 305–318. [Google Scholar]
- Lee, O.S.; Stupp, S.I.; Schatz, G.C. Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers. J. Am. Chem. Soc. 2011, 133, 3677–3683. [Google Scholar] [CrossRef]
- Brandon, C.J.; Martin, B.P.; McGee, K.J.; Stewart, J.J.P.; Braun-Sand, S.B. An approach to creating a more realistic working model from a protein data bank entry. J. Mol. Model. 2015, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lehninger, A.L. Biochemistry. The Molecular Basis of Cell Structure and Function; Worth: New York, NY, USA, 1972. [Google Scholar]
- Bystrov, V.S.; Bdikin, I.K.; Singh, B. Piezoelectric and ferroelectric properties of various amino acids and tubular dipeptide nanostructures: Molecular modeling. Nanomater. Sci. Eng. 2020, 2, 11–24. [Google Scholar]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Clarendon Press: Oxford, UK, 1977. [Google Scholar]
- Bystrov, V.S.; Bdikin, I.; Heredia, A.; Pullar, R.C.; Mishina, E.; Sigov, A.; Kholkin, A.L. Piezoelectricity and Ferroelectricity in biomaterials: From proteins to self-assembled peptide nanotubes. In Piezoelectric Nanomaterials for Biomedical Applications; Ciofani, G., Menciassi, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 187–211. [Google Scholar]
- Bystrov, V.S.; Seyedhosseini, E.; Kopyl, S.; Bdikin, I.K.; Kholkin, A.L. Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements. J. Appl. Phys. 2014, 116, 066803. [Google Scholar] [CrossRef] [Green Version]
- Kholkin, A.; Amdursky, N.; Bdikin, I.; Gazit, E.; Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano. 2010, 4, 610–614. [Google Scholar] [CrossRef]
- Nguyen, V.; Zhu, R.; Jenkins, K.; Yang, R. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun. 2016, 7, 13566. [Google Scholar] [CrossRef] [Green Version]
- Bystrov, V.S.; Paramonova, E.V.; Bdikin, I.K.; Kopyl, S.; Heredia, A.; Pullar, R.C.; Kholkin, A.L. Bioferroelectricity: Diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics 2012, 440, 3–24. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Zelenovskiy, P.S.; Nuraeva, A.S.; Kopyl, S.; Zhulyabina, O.A.; Tverdislov, V.A. Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes. J. Mol. Model. 2019, 25, 199. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Kopyl, S.A.; Zelenovskiy, P.; Zhulyabina, O.A.; Tverdislov, V.A.; Salehli, F.; Ghermani, N.E.; Shur, V.Y.; Kholkin, A.L. Investigation of physical properties of diphenylalanine peptide nanotubes having different chiralities and embedded water molecules. Ferroelectrics 2018, 525, 168–177. [Google Scholar] [CrossRef]
- Bdikin, I.; Bystrov, V.S.; Delgadillo, I.; Gracio, J.; Kopyl, S.; Wojtas, M.; Mishina, E.; Sigov, A.; Kholkin, A.L. Polarization switching and patterning in self-assembled peptide tubular structures. J. Appl. Phys. 2012, 111, 074104. [Google Scholar] [CrossRef] [Green Version]
- Bystrov, V.S.; Zelenovskiy, P.S.; Nuraeva, A.S.; Kopyl, S.; Zhulyabina, O.A.; Tverdislov, V.A. Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: Modeling of structure and properties. Math. Biol. Bioinform. 2019, 14, 94–124. [Google Scholar] [CrossRef] [Green Version]
- Zelenovskiy, P.S.; Nuraeva, A.S.; Kopyl, S.; Arkhipov, S.G.; Vasilev, S.G.; Bystrov, V.S.; Gruzdev, D.A.; Waliszek, M.; Svitlyk, V.; Shur, V.Y.; et al. Chirality-dependent growth of self-assembled diphenylalanine microtubes. Cryst. Growth Des. 2019, 19, 6414–6421. [Google Scholar] [CrossRef]
- Filippov, S.V.; Bystrov, V.S. Visual-differential analysis of structural features of internal cavities of two chiral forms of diphenylalanine nanotubes. Biophysics 2020, 65, 1–8. [Google Scholar] [CrossRef]
- Zelenovskiy, P.S.; Shur, V.Y.; Nuraeva, A.S.; Vasilev, S.G.; Vasileva, D.S.; Alikin, D.O.; Chezganov, D.S.; Krasnov, V.P.; Kholkin, A.L. Morphology and piezoelectric properties of diphenylalanine microcrystals grown from methanol-water solution. Ferroelectrics 2015, 475, 127–134. [Google Scholar] [CrossRef]
- Zelenovskiy, P.; Kornev, I.; Vasilev, S.; Kholkin, A. On the origin of the great rigidity of self-assembled diphenylalanine nanotubes. Phys. Chem. Chem. Phys. 2016, 18, 29681–29685. [Google Scholar] [CrossRef] [Green Version]
- Gorbitz, C.H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 2001, 7, 5153–5159. [Google Scholar] [CrossRef]
- Gorbitz, C.H. Hydrophobic dipeptides: The final piece in the puzzle. Acta. Cryst. 2018, B74, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Han, T.E.; Kim, Y.; Park, J.S.; Choi, J.; Churchill, D.G.; Kim, S.O.; Ihee, H. Role of water in directing diphenylalanine assembly into nanotubes and nanowires. Adv. Mater. 2010, 22, 583–587. [Google Scholar] [CrossRef]
- Andrade-Filho, T.; Martins, T.C.; Ferreira, F.F.; Alves, W.A.; Rocha, A.R. Water-driven stabilization of diphenylalanine nanotube structures. Theor. Chem. Acc. 2016, 135, 185. [Google Scholar] [CrossRef] [Green Version]
- Ryan, H.; Carter, M.; Stenmark, P.; Stewart, J.J.P.; Braun-Sand, S.B. A comparison of X-ray and calculated structures of the enzyme MTH1. J. Mol. Model. 2016, 22, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hypercube Inc. HyperChem, versions 7.51 and 8.0; Hypercube Inc.: Gainesville, FL, USA, 2002; Available online: http://www.hyper.com/?tabid=360 (accessed on 27 July 2020).
- The Cambridge Crystallographic Data Centre (CCDC). Available online: https://www.ccdc.cam.ac.uk/ (accessed on 27 July 2020).
- VASP (Vienna Ab initio Simulation Package). Available online: https://www.vasp.at/ (accessed on 27 July 2020).
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Morrison, I.; Li, J.-C.; Jenkins, S.; Xantheas, S.S.; Payne, M.C. Ab-initio total energy studies of the static and dynamical properties of ice Ih. J. Phys. Chem. B 1997, 101, 6146–6150. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, J.; Li, F.; Fang, H.; Lu, J.P. First-principles study of water chains encapsulated in single-walled carbon nanotube. J. Phys. Chem. C 2009, 113, 5368–5375. [Google Scholar] [CrossRef]
- Yang, R.; Hilder, T.A.; Chung, S.H.; Rendell, A. First-principles study of water confined in single-walled silicon carbide nanotubes. J. Phys. Chem. C 2011, 115, 255–264. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Zhulyabina, O.A.; Kopy, S.A.; Zelenovskiy, P.S.; Nuraeva, A.S.; Tverdislov, V.A.; Filippov, S.V.; Salehli, F.; Kholkin, A.L.; Shur, V.Y. Modeling and computer study of diphenylalanine peptide nanotubes, containing the water molecules. In Abstract Book of the International Online Conference “Research Ferroelectric Materials by Russian Scientists. Centenary of Discovery Ferroelectricity “(SE-100) (Yekaterinburg, 17–19 August 2020); Ural Federal University: Yekaterinburg, Russia, 2020; pp. 48–50. [Google Scholar]
- Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and use of quantum-mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902–3909. [Google Scholar] [CrossRef]
- Dewar, M.J.S.; Dieter, K.M. Evaluation of AM1 calculated proton affinities and deprotonation enthalpies. J. Am. Chem. Soc. 1986, 108, 8075–8086. [Google Scholar] [CrossRef]
- Stewart, J.J.P. MOPAC: A semiempirical molecular orbital program. J. Comp. Aided Mol. Des. 1990, 4, 1–103. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods. I. Method. J. Comput. Chem. 1989, 10, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods. II. Applications. J. Comput. Chem. 1989, 10, 221–264. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Mod. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [Green Version]
- Rocha, G.B.; Freire, R.O.; Simas, A.M.; Stewart, J.J.P. RM1: A Reparameterization of AM1 for Y, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006, 27, 1101–1111. [Google Scholar] [CrossRef]
- Lima, N.B.D.; Rocha, G.B.; Freire, R.O.; Simas, A.M. RM1 Semiempirical Model: Chemistry, Pharmaceutical Research, Molecular Biology and Materials Science. J. Braz. Chem. Soc. 2019, 30, 683–716. [Google Scholar] [CrossRef]
- Bai, J.; Wang, J.; Zeng, X.C. Multiwalled ice helixes and ice nanotubes. Proc. Nat. Acad. Sci. USA 2006, 103, 19664–19667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shayeganfar, F.; Beheshtian, J.; Shahsavari, R. First-Principles Study of Water Nanotubes Captured Inside Carbon/Boron Nitride Nanotubes. Langmuir 2018, 34, 11176–11187. [Google Scholar] [CrossRef] [PubMed]
- Bordonskiy, G.S.; Orlov, A.O. The study of ferroelectric phase transitions of water in nanoporous silicates with joint electrical noise and calorimetric measurements. Phys. Solid State 2014, 56, 1575–1582. (In Russian) [Google Scholar] [CrossRef]
- Bdikin, I.; Bystrov, V.; Kopyl, S.; Lopes, R.P.G.; Delgadillo, I.; Gracio, J.; Mishina, E.; Sigov, A.; Kholkin, A.L. Evidence of ferroelectricity and phase transition in pressed diphenylalanine. Appl. Phys. Lett. 2012, 100, 043702. [Google Scholar] [CrossRef]
- Winarto, W.; Yamamoto, E.; Yasuoka, K. Water Molecules in a Carbon Nanotube under an Applied Electric Field at Various Temperatures and Pressures. Water 2017, 9, 473. [Google Scholar] [CrossRef]
- Mikami, F.; Matsuda, K.; Kataura, H.; Maniwa, Y. Dielectric Properties of Water inside Single-Walled Carbon Nanotubes. ACS Nano 2009, 3, 1279–1287. [Google Scholar] [CrossRef]
L-FF | D-FF | |
---|---|---|
Space Group | P61 | P65 |
a, Å | 24.0709 (13) | 23.9468 (14) |
b, Å | 24.0709 (13) | 23.9468 (14) |
c, Å | 5.4560 (4) | 5.4411 (2) |
V, Å3 | 2737.7 (3) | 2702.2 (2) |
Parameter | L-FF | D-FF | ||
---|---|---|---|---|
Initial | Opt (No Water) | Initial | Opt (No Water) | |
a, Å | 24.0709 | 23.8308 (284) | 23.9468 | 23.7877 (806) |
b, Å | 24.0709 | 23.8308 (284) | 23.9468 | 23.7877 (806) |
c, Å | 5.456 | 5.4035 (861) | 5.4411 | 5.4022 (7125) |
R0, Å | 12.236 | 12.091 | 12.102 | 12.075 |
R1, Å | 15.271(698) | 15.042 (076) | 15.180 (569) | 15.030 (688) |
R2, Å | 12.218(349) | 12.098 (817) | 12.135 (396) | 12.075 (906) |
Etot, eV | −1593.318267 | −1657.643468 | −1608.735638 | −1657.600241 |
Calculated Values | Extracted 42 H2O Cluster (21 H2O Per Unit Cell) | Two Coils of D-FF | ||||
---|---|---|---|---|---|---|
Initial (Ih) Structure | After Optimization Inside D-FF | Initial D-FF Structure without H2O | With 21 H2O Per u.c. of Initial Structure | With 21 H2O Per u.c. after Optimization | ||
1 | 2 | 3 | 4 | 5 | 6 | |
Total energy, a.u. | Et | −534.5776 | −537.78035 | −1739.5256 | −2271.06543 | −2277.23035 |
ΔEt | −3.20275 (−87.1513 eV) | – | −6.16492 (−167.7561 eV) | |||
Binding energy, eV | Eb | −312.84856 | −399.99734 | −2265.27936 | −2495.46785 | −2663.21967 |
ΔEb | −87.14878 | – | −167.75182 | |||
Dipole moment, D | Dt | 1.104 | 29.404 | 140.385 | 139.52 | 158.461 |
Dz | −0.876 | −28.385 | −140.349 | −139.447 | −158.441 | |
Polarization, C/m2 | Pt | 0.00569 | 0.15075 | 0.139927 | 0.119485 | 0.133218 |
Pz | −0.00451 | −0.14554 | −0.139892 | −0.119423 | −0.133201 | |
VdW volume, Å3 | V | 647.8 | 650.55 | 3346.47 | 3894.86 | 3967.61 |
Calculated Values | Extracted 42 H2O Cluster (21 H2O Per Unit Cell (u.c.)) | Two Coils of L-FF | ||||
---|---|---|---|---|---|---|
Initial (Ih) Structure | After Optimization Inside L-FF | Initial L-FF Structure without H2O | With 21 H2O Per u.c. of Initial Structure | With 21 H2O Per u.c. after Optimization | ||
1 | 2 | 3 | 4 | 5 | 6 | |
Total energy, a.u. | Et | −534.5776 | −537.6803 | −1739.0274 | −2272.7630 | −2278.8142 |
ΔEt | −3.10268 (−84.42816 eV) | – | −6.05124 (−164.66275 eV) | |||
Binding energy, eV | Eb | −312.8486 | −397.2743 | −2251.7229 | −2541.6595 | −2706.317 |
ΔEb | −84.426 | – | −164.657 | |||
Dipole moment, D | Dt | 1.104 | 28.646 | 140.757 | 133.11 | 157.8331 |
Dz | −0.876 | −28.386 | −140.217 | −130.279 | −157.035 | |
Polarization, C/m2 | Pt | 0.00569 | 0.14824 | 0.1395 | 0.113128 | 0.13252 |
Pz | −0.00451 | −0.14690 | −0.13897 | −0.110722 | −0.13185 | |
VdW volume, Å3 | V | 647.8 | 644.55 | 3365.6 | 3924.73 | 3972.63 |
126 H2O Water/Ice Cluster after Optimization | Method Used (In RHF) | ||||||
---|---|---|---|---|---|---|---|
From D-FF | From L-FF | ||||||
AM1 | PM3 | RM1 | AM1 | PM3 | RM1 | ||
Dipole moment, Debye | Dt | 95.92 | 97.355 | 100.575 | 94.982 | 97.226 | 99.533 |
Dz | −93.496 | −95.058 | −98.130 | −94.653 | −96.787 | −99.154 | |
Dy | −15.324 | −14.816 | −15.481 | 7.304 | 8.528 | 8.068 | |
Dx | 14.978 | 14.912 | 15.695 | 2.991 | 3.521 | 3.188 | |
Polarization, C/m2 | Pt | 0.166 | 0.1685 | 0.1741 | 0.1655 | 0.1698 | 0.1738 |
Pz | −01618 | −0.1645 | −0.1699 | −0.1653 | −0.1690 | −0.1731 | |
Py | −0.0265 | −0.0256 | −0.0265 | 0.0128 | 0.0149 | 0.0141 | |
Px | 0.0259 | 0.0258 | 0.0259 | 0.0052 | 0.0061 | 0.0056 | |
VdW Volume, Å3 | 1927.21 | 1910.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bystrov, V.; Coutinho, J.; Zelenovskiy, P.; Nuraeva, A.; Kopyl, S.; Zhulyabina, O.; Tverdislov, V. Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis. Nanomaterials 2020, 10, 1999. https://doi.org/10.3390/nano10101999
Bystrov V, Coutinho J, Zelenovskiy P, Nuraeva A, Kopyl S, Zhulyabina O, Tverdislov V. Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis. Nanomaterials. 2020; 10(10):1999. https://doi.org/10.3390/nano10101999
Chicago/Turabian StyleBystrov, Vladimir, Jose Coutinho, Pavel Zelenovskiy, Alla Nuraeva, Svitlana Kopyl, Olga Zhulyabina, and Vsevolod Tverdislov. 2020. "Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis" Nanomaterials 10, no. 10: 1999. https://doi.org/10.3390/nano10101999