Interfacial Interaction in MeOx/MWNTs (Me–Cu, Ni) Nanostructures as Efficient Electrode Materials for High-Performance Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SEM and XRD Characterization
3.2. Raman Analysis
3.3. XPS Characterization
3.4. NEXAFS Characterization
3.5. Theoretical Simulation of XANES Spectra
3.6. Electrochemical Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, B.; Wu, X. Transition metal oxides anchored on graphene/carbon nanotubes conductive network as both the negative and positive electrodes for asymmetric supercapacitor. J. Alloys Compd. 2020, 842, 155838. [Google Scholar] [CrossRef]
- Wen, Z.B.; Yua, F.; You, T.; Zhu, L.; Zhang, L.; Wu, Y.P. A core-shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors. Mater. Res. Bull. 2016, 74, 241–247. [Google Scholar] [CrossRef]
- Khalafallah, D.; Miao, J.; Zhi, M.; Hong, Z. Structuring graphene quantum dots anchored CuO for high-performance hybrid supercapacitors. J. Taiwan. Inst. Chem. Eng. 2021, 122, 168–175. [Google Scholar] [CrossRef]
- Sheikhzadeh, M.; Sanjabi, S.; Gorji, M.; Khabazian, S. Nano composite foam layer of CuO/graphene oxide (GO) for high performance supercapacitor. Synth. Met. 2018, 244, 10–14. [Google Scholar] [CrossRef]
- Yousaf, S.; Aadil, M.; Zulfiqar, S.; Warsi, M.F.; Agboola, P.O.; Aboud, M.F.A.; Shakir, I. Hierarchically porous CuO microspheres and their r-GO based nanohybrids for electrochemical supercapacitors applications. J. Mater. Res. Technol. 2020, 9, 14158–14167. [Google Scholar] [CrossRef]
- Gund, G.S.; Dubal, D.P.; Shinde, S.S.; Lokhande, C.D. Architectured Morphologies of Chemically Prepared NiO/MWCNTs Nanohybrid Thin Films for High Performance Supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 3176–3188. [Google Scholar] [CrossRef]
- Shinde, S.K.; Dubal, D.P.; Ghodake, G.S.; Fulari, V.J. Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC Adv. 2015, 5, 4443–4447. [Google Scholar] [CrossRef]
- Bai, Y.; Du, M.; Chang, J.; Sun, J.; Gao, L. Supercapacitors with high capacitance based on reduced graphene ox-ide/carbon nanotubes/NiO composite electrodes. J. Mater. Chem. A 2014, 2, 3834–3840. [Google Scholar] [CrossRef]
- Jung, M.; Sivakumar, P.; Park, H.S. Carbon nanotube branch-grown nickel nanoparticles/graphene composites for a high-capacitance electrode. J. Phys. Energy 2023, 5, 025005. [Google Scholar] [CrossRef]
- Bu, I.Y.Y.; Huang, R. Fabrication of CuO-decorated reduced graphene oxide nanosheets for supercapacitor applications. Ceram. Int. 2017, 43, 45–50. [Google Scholar] [CrossRef]
- Xu, H.; Cao, Y.; Li, Y.; Cao, P.; Liu, D.; Zhang, Y.; Li, Q. High-loading Co-doped NiO nanosheets on carbon-welded carbon nanotube framework enabling rapid charge kinetic for enhanced supercapacitor performance. J. Energy Chem. 2020, 50, 240–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Franklin, N.W.; Chen, R.J.; Dai, H. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett. 2000, 1, 35–41. [Google Scholar] [CrossRef]
- Yalovega, G.E.; Myasoedova, T.N.; Shmatko, V.A.; Brzhezinskaya, M.M.; Popov, Y.V. Influence of Cu/Sn mixture on the shape and structure of crystallites in copper-containing films: Morphological and X-ray spectroscopy studies. Appl. Surf. Sci. 2016, 372, 93–99. [Google Scholar] [CrossRef]
- Nam, K.W.; Kim, K.H.; Lee, E.S.; Yoon, W.S.; Yang, X.Q.; Kim, K.B. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. J. Power Sources 2008, 182, 642–652. [Google Scholar] [CrossRef]
- Shitole, K.D.; Nainani, R.K.; Thakur, P. Preparation, Characterisation and Photocatalytic Applications of TiO2-MWCNTs Composite. Def. Sci. J. 2013, 63, 435–441. [Google Scholar] [CrossRef]
- Alekseev, A.; Chen, D.; Tkalya, E.E.; Ghislandi, M.G.; Syurik, Y.; Ageev, O.; Loos, J.; With, G.D. Local Organization of Graphene Network Inside Graphene/Polymer Composites. Adv. Funct. Mater. 2012, 22, 1311–1318. [Google Scholar] [CrossRef]
- Syurik, Y.V.; Ghislandi, M.G.; Tkalya, E.E.; Paterson, G.; McGrouther, D.; Ageev, O.A.; Loos, J. Graphene Network Organisation in Conductive Polymer Composites. J. Macromol. Chem. Phys. 2012, 213, 1251–1258. [Google Scholar] [CrossRef]
- Syurik, J.; Ageev, O.A.; Cherednichenko, D.I.; Konoplev, B.G.; Alexeev, A. Non-linear conductivity dependence on temperature in graphene-based polymer nanocomposite. Carbon 2013, 63, 317–323. [Google Scholar] [CrossRef]
- Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Gross, S.; Maragno, C.; Tondello, E. Recent trends on nanocom-posites based on Cu, Ag and Au clusters: A closer look. Coord. Chem. Rev. 2006, 250, 1294–1314. [Google Scholar] [CrossRef]
- Endut, Z.; Hamdi, M.; Basirun, W.J. Pseudocapacitive performance of vertical copper oxide nanoflakes. Thin Solid Films 2013, 528, 213–216. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Yalovega, G.E.; Shmatko, V.A.; Funik, A.O.; Petrov, V.V. SiO2CuOx films for nitrogen dioxide detection: Correlation between technological conditions and properties. Sens. Actuator B Chem. 2016, 230, 167–175. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Lin, J.; Malgras, V.; Dou, S.X.; Kim, J.H.; Yamauchi, Y. Large-scale synthesis of coaxial carbon nano-tube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 2015, 11, 211–218. [Google Scholar] [CrossRef]
- Yao, P.; Li, C.; Yu, J.; Zhang, S.; Zhang, M.; Liu, H.; Cong, M.; Ji, G.; Zhang, T.; Zhu, C.; et al. High performance flexible energy storage device based on copper foam supported NiMoO4 nanosheets-CNTs-CuO nanowires composites with core–shell holey nanostructure. J. Mater. Sci. Technol. 2021, 85, 87–94. [Google Scholar] [CrossRef]
- Sivkov, D.V.; Petrova, O.V.; Nekipelov, S.V.; Vinogradov, A.S.; Skandakov, R.N.; Isaenko, S.I.; Ob’edkov, A.M.; Kaverin, B.S.; Vilkov, I.V.; Korolev, R.I.; et al. The Identification of Cu–O–C Bond in Cu/MWCNTs Hybrid Nanocomposite by XPS and NEXAFS Spectroscopy. Nanomaterials 2021, 11, 2993. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Song, L.; Meng, J.; Gao, B.; Chu, W.; Xu, H.; Luo, Y.; Guo, J.; Marcelli, A.; Xie, S.; et al. Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 2009, 47, 967–973. [Google Scholar] [CrossRef]
- Zhong, J.; Song, L.; Yan, D.; Wu, Z.Y.; Wang, C.; Xie, S.; Qian, H. A XANES characterization of structural defects in single-walled carbon nanotubes. Radiat. Phys. Chem. 2006, 75, 1861–1865. [Google Scholar] [CrossRef]
- Ji, Q.; Zou, L.; Liu, H.; Yong, J.; Chen, J.; Song, Z.; Gao, J. Bimetallic nanoparticles embedded in N-doped carbon nanotubes derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. J. Solid State Chem. 2021, 303, 122515. [Google Scholar] [CrossRef]
- Jurzinsky, T.; Gomez-Villa, E.D.; Kübler, M.; Bruns, M.; Elsasser, P.; Melke, J.; Scheiba, F.; Cremers, C. Functionalization of multi-walled carbon nanotubes with indazole. Electrochim. Acta 2019, 298, 884–892. [Google Scholar] [CrossRef]
- Ata-ur-Rehman, A.; Ali, G.; Abbas, S.M.; Iftikhar, M.; Zahid, M.; Yaseen, S.; Saleem, S.; Haider, S.; Arshad, M.; Badshah, A. Axial expansion of Ni-doped TiO2 nanorods grown on carbon nanotubes for favourable lithium-ion intercalation. Chem. Eng. J. 2019, 375, 122021. [Google Scholar] [CrossRef]
- Zhong, J.; Meng, J.; Liang, X.; Song, L.; Zhao, T.; Xie, S.; Ibrahim, K.; Qian, H.; Wang, J.; Guo, J.; et al. XANES study of phenylalanine and glycine adsorption on single-walled carbon nanotubes. Mater. Lett. 2009, 63, 431–433. [Google Scholar] [CrossRef]
- Großmann, D.; Dreier, A.; Lehmann, C.; Grünert, W. Methanol synthesis over Cu–ZnO aggregates supported on carbon nanotubes. Appl. Catal. A Gen. 2015, 504, 351–360. [Google Scholar] [CrossRef]
- Wang, H.; Liang, Y.; Gong, M.; Li, Y.; Chang, W.; Mefford, T.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; et al. An ultrafast nickel—Iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 2012, 3, 917. [Google Scholar] [CrossRef] [PubMed]
- Großmann, D.; Dreierb, A.; Lehmannb, C.W.; Grünerta, W. Encapsulation of copper and zinc oxide nanoparticles inside small diameter carbon nanotubes. Microporous Mesoporous Mater. 2015, 202, 189–197. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Shmatko, V.; Yalovega, G.; Krestinin, A.; Bashkin, I.; Bogoslavskaja, E. Electronic Structure of Hydrogenated Carbon Nanotubes Studied by Core Level Spectroscopy. J. Electron. Spectros Relat. Phenomena 2014, 196, 99–103. [Google Scholar] [CrossRef]
- Yalovega, G.; Semenistaya, T.; Shmatko, V.; Kremennaya, M.; Tsud, N. Investigation of the Co/polyacrylonitrile nanocomposite electronic structure: X-ray spectroscopy analysis. Radiat. Phys. Chem. 2020, 175, 108256. [Google Scholar] [CrossRef]
- Goyenola, C.; Gueorguiev, G.K.; Stafström, S.; Hultman, L. Fullerene-like CSx: A first-principles study of synthetic growth. Chem. Phys. Lett. 2011, 506, 86–91. [Google Scholar] [CrossRef]
- Alves Machado Filho, M.; Hsiao, C.L.; Dos Santos, R.B.; Hultman, L.; Birch, J.; Gueorguiev, G.K. Self-Induced Core-Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations. ACS Nanosci. Au 2023, 3, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Brzhezinskaya, M.M.; Vinogradov, A.S.; Krestinin, A.V.; Zvereva, G.I.; Kharitonov, A.P.; Kulakova, I.I. Comparative X-ray absorption investigation of fluorinated single-walled carbon nanotubes. Phys. Solid State 2010, 52, 876–883. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.M.; Morilova, V.M.; Baitinger, E.M.; Evsyukov, S.E.; Pesin, L.A. Study of poly (vinylidene fluoride) radiative modification using core level spectroscopy. Polym. Degrad. Stab. 2014, 99, 176–179. [Google Scholar] [CrossRef]
- Krestinin, A.V.; Kharitonov, A.P.; Shul’ga, Y.M.; Zhigalina, O.M.; Knerelman, E.I.; Dubois, M.; Brzhezinskaya, M.M.; Vinogradov, A.S.; Preobrazhenskii, A.B.; Zvereva, G.I.; et al. Fabrication and characterization of fluorinated single-walled carbon nanotubes. Nanotechnol. Russia 2009, 4, 60–78. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Chernysheva, D.; Pudova, L.; Popov, Y.; Smirnova, N.; Maslova, O.; Allix, M.; Rakhmatullin, A.; Leontyev, N.; Ni-kolaev, A.; Leontyev, I. Non-Isothermal Decomposition as Efficient and Simple Synthesis Method of NiO/C Nano-particles for Asymmetric Supercapacitors. Nanomaterials 2021, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate Ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Jin, Z.; Yang, C.; Akkermans, R.L.C.; Robertson, S.H.; Spenley, N.A.; Miller, S.; Todd, S.M. COMPASS II: Extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Bunău, O.; Joly, Y. Self-consistent aspects of x-ray absorption calculations. J. Phys. Condens. Matter. 2009, 21, 34550. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Ren, Y.; Gu, S.; Wang, Q.; Li, H.; Yue, K.; Gao, T.; Zhou, G. NiFe2V2O8@N-Doped carbon Yolk-Double shell spheres for efficient lithium storage. Chem. Eng. J. 2023, 454, 140045. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Wang, Y.; Gong, Q.; Gu, S.; Gao, T.; Sun, X.; Zhou, G. Self-template formation of porous yolk-shell structure Mo-doped NiCo2O4 toward enhanced lithium storage performance as anode material. J. Mater. Sci. Technol. 2022, 102, 186–194. [Google Scholar] [CrossRef]
- Ma, Y.; Xie, X.; Yang, W.; Yu, Z.; Sun, X.; Zhang, Y.; Yang, X.; Kimura, H.; Hou, C.; Guo, Z.; et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv. Compos. 2021, 4, 906–924. [Google Scholar] [CrossRef]
- Chernysheva, D.V.; Leontyev, I.N.; Avramenko, M.V.; Lyanguzov, N.V.; Grebenyuk, T.I.; Smirnova, N.V. One step simultaneous electrochemical synthesis of NiO/multilayer graphene nanocomposite as an electrode material for high performance supercapacitors. Mendeleev Commun. 2021, 31, 160–162. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, L.; Yu, W.; Xie, H. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci. Rep. 2018, 8, 5282. [Google Scholar] [CrossRef] [PubMed]
- Djamila, B.; Eddine, L.S.; Abderrhmane, B.; Nassiba, A.; Barhoum, A. In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L. Biomass Conv. Bioref. 2022, 14, 6567–6580. [Google Scholar] [CrossRef]
- Piao, Y.; Tondare, V.N.; Davis, C.S.; Gorham, J.M.; Petersen, E.J.; Gilman, J.W.; Scott, K.; Vladár, A.E.; Walker, A.R.H. Comparative study of multiwall carbon nanotube nanocomposites by Raman, SEM, and XPS measurement techniques. Compos. Sci. Technol. 2021, 208, 108753. [Google Scholar] [CrossRef]
- Zeng, X.; Yu, S.; Ye, L.; Li, M.; Pan, Z.; Sun, R.; Xu, J. Encapsulating carbon nanotubes with SiO2: A strategy for applying them in polymer nanocomposites with high mechanical strength and electrical insulation. Mater. Chem. C 2015, 3, 187–195. [Google Scholar] [CrossRef]
- De Menezes, B.R.C.; Ferreira, F.V.; Silva, B.C.; Simonetti, E.A.N.; Bastos, T.M.; Cividanes, L.S.; Thim, G.P. Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites. J. Mater. Sci. 2018, 53, 14311–14327. [Google Scholar] [CrossRef]
- Mishakov, I.V.; Bauman, Y.I.; Brzhezinskaya, M.; Netskina, O.V.; Shubin, Y.V.; Kibis, L.S.; Stoyanovskii, V.O.; Larionov, K.B.; Serkova, A.N.; Vedyagin, A.A. Water purification from chlorobenzenes using heteroatom-functionalized carbon nanofibers produced on self-organizing Ni–Pd catalyst. J. Environ. Chem. 2022, 10, 107873. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Mishakov, I.V.; Bauman, Y.I.; Shubin, Y.V.; Maximova, T.A.; Stoyanovskii, V.O.; Gerasimov, E.Y.; Vedyagin, A.A. One-pot functionalization of catalytically derived carbon nanostructures with heteroatoms for tox-ic-free environment. Appl. Surf. Sci. 2022, 590, 153055. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Irzhak, A.; Irzhak, D.; Kang, T.W.; Kononenko, O.; Matveev, V.; Panin, G.; Roshchupkin, D. Direct growth of graphene film on piezoelectric La3Ga5.5Ta0.5O14 crystal. Phys. Status Solidi Rapid Res. Lett. 2016, 10, 639–644. [Google Scholar] [CrossRef]
- Cheng, Y.; Veder, J.P.; Thomsen, L.; Zhao, S.; Saunders, M.; Demichelis, R.; Liu, C.; De Marco, R.; Jiang, S.P. Electro-chemically substituted metal phthalocyanine, e-MPc (M = Co, Ni) as highly active and selective catalysts for CO2 reduction. J. Mater. Chem. A 2018, 6, 1370–1375. [Google Scholar] [CrossRef]
- Taubitz, C.; Kuepper, K.; Raekers, M.; Galakhov, V.R.; Felea, V.; Tsurkan, V.; Neumann, M. Reinvestigation of the Fe, Cu and Cr valences in (FeCu)Cr2S4 spinels. Phys. Status Solidi B 2009, 246, 1470–1475. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Popova, I.; Yates, J.T., Jr.; Bronikowski, M.J.; Huffman, C.B.; Liu, J.; Smalley, R.E.; Hwu, H.H.; Chen, J.G. Oxygen-Containing Functional Groups on Single-Wall Carbon Nanotubes: NEXAFS and Vibrational Spectroscopic Studies. J. Am. Chem. Soc. 2001, 123, 10701. [Google Scholar] [CrossRef] [PubMed]
- Benzerara, K.; Menguy, N.; López-García, P.; Yoon, T.H.; Kazmierczak, J.; Tyliszczak, T.; Guyot, F.; Brown, G.E., Jr. Nanoscale detection of organic signatures in carbonate microbialites. Proc. Natl. Acad. Sci. USA 2006, 103, 9440–9445. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J.Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An Advanced Ni−Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455. [Google Scholar] [CrossRef] [PubMed]
- Sivkov, V.N.; Petrova, O.V.; Ob”edkov, A.M.; Kremlev, K.V.; Kaverin, B.S.; Semenov, N.M.; Gusev, S.A.; Nekipelov, S.V. X-ray and synchrotron investigations of heterogeneous systems based on multiwalled carbon nanotubes. Phys. Solid State 2015, 57, 197–204. [Google Scholar] [CrossRef]
- Nesov, S.N.; Bolotov, V.V.; Korusenko, P.M.; Povoroznyuk, S.N.; Vilkov, O.Y. Interfacial interaction in a composite based on multi-walled carbon nanotubes and amorphous tin oxide. Phys. Solid State 2016, 58, 997–1003. [Google Scholar] [CrossRef]
- Sivkov, V.N.; Ob”edkov, A.M.; Petrova, O.V.; Nekipelov, S.V.; Mingaleva, A.E.; Kremlev, K.V.; Kaverinb, B.S.; Semenov, N.M.; Kadomtseva, A.V.; Gusev, S.A.; et al. Synchrotron, X-Ray, and Electron Microscopic Studies of Catalyst Systems Based on Multiwalled Carbon Nanotubes Modified by Copper Nanoparticles. Phys. Solid State 2020, 62, 214–222. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Song, H.; Chen, X.; Fedoseeva, Y.V.; Okotrub, A.V.; Bulusheva, L.G. “Butterfly Effect” in CuO/Graphene Composite Nanosheets: A Small Interfacial Adjustment Triggers Big Changes in Electronic Structure and Li-Ion Storage Performance. ACS Appl. Mater. Interfaces 2014, 6, 17236–17244. [Google Scholar] [CrossRef] [PubMed]
- Nesov, S.N.; Korusenko, P.M.; Povoroznyuk, S.N.; Bolotov, V.V.; Knyazev, E.V.; Smirnov, D.A. Effect of carbon nanotubes irradiation by argon ions on the formation of SnO2−x/MWCNTs composite. Nucl. Instrum. Methods Phys. Res. B 2017, 410, 222–229. [Google Scholar] [CrossRef]
- De Groot, F.M.; Fuggle, J.C.; Thole, B.T.; Sawatzky, G.A. 2p X-ray Absorption of 3d Transition-Metal Compounds: An Atomic Multiplet Description Including the Crystal Field. Phys. Rev. B 1990, 42, 5459–5468. [Google Scholar] [CrossRef]
- Cheng, K.; Han, N.; Su, Y.; Zhang, J.; Zhao, J. Schottky barrier at graphene/metal oxide interfaces: Insight from first-principles calculations. Sci. Rep. 2016, 7, 41771. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Huang, B. Graphene adhesion on MoS2 monolayer: An Ab initio study. Nanoscale 2011, 3, 3883–3887. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.S.; Zhou, G.; Yin, L.C.; Ren, W.; Li, F.; Cheng, H.M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131. [Google Scholar] [CrossRef]
- Zandkarimi, B.; Sun, G.; Halder, A.; Seifert, S.; Vajda, S.; Sautet, P.; Alexandrova, A.N. Interpreting the Operando XANES of Surface-Supported Subnanometer Clusters: When Fluxionality, Oxidation State, and Size Effect Fight. J. Phys. Chem. C 2020, 124, 10057–10066. [Google Scholar] [CrossRef]
- Lu, Y.; Su, L.; Qi, J.; Lei, S.; Liu, B.; Zang, Q.; Shi, S.; Yan, X. A combined DFT and experimental study on the nucleation mechanism of NiO nanodots on graphene. J. Mater. Chem. A 2018, 6, 13717–13724. [Google Scholar] [CrossRef]
- Hu, H.; Ouyang, G. First-principles calculations of interface engineering for 2D α-In2Se3-based van der Waals multiferroic heterojunctions. Appl. Surf. Sci. 2021, 545, 149024. [Google Scholar] [CrossRef]
- Hu, H.; Ouyang, G. Interface induced transition from Schottky-to-Ohmic contacts in single-walled carbon nanotube-based van der Waals Schottky heterostructures. Mater. Today Nano 2022, 20, 100267. [Google Scholar] [CrossRef]
- Vidhyadharan, B.; Misnon, I.I.; Abd Aziz, R.; Padmasree, K.P.; Yusoff, M.M.; Jose, R. Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J. Mater. Chem. A 2014, 2, 6578–6588. [Google Scholar] [CrossRef]
- Luo, D.; Li, Y.; Liu, J.; Feng, H.; Qian, D.; Peng, S.; Jiang, J.; Liu, Y. One-step solution-phase synthesis of a novel RGO–Cu2O–TiO2 ternary nanocomposite with excellent cycling stability for supercapacitors. J. Alloys Compd. 2013, 581, 303–307. [Google Scholar] [CrossRef]
- Ding, M.; Tang, Y.; Star, A. Understanding Interfaces in Metal−Graphitic Hybrid Nanostructures. J. Phys. Chem. Lett. 2013, 4, 147–160. [Google Scholar] [CrossRef]
- Chou, A.; Boecking, T.; Singh, N.K.; Gooding, J.J. Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. Chem. Commun. 2005, 7, 842–844. [Google Scholar] [CrossRef] [PubMed]
Sample | Energy Positions, eV | Contribution of the Components, % | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C=C sp2 | C–C sp3 | C–Ox | Ni–C | π–π | C=C sp2 | C–C sp3 | C–Ox | Ni–C | π–π | |
MWCNTs | 284.8 | 285.3 | 286.3 | 291.3 | 88.1 | 6.6 | 2.0 | – | 3.3 | |
NiOx/MWCNTs | 284.8 | 285.3 | 286.3 | 284.1 | 291.3 | 88.4 | 2.6 | 3.5 | 2.3 | 3.2 |
CuOx/MWCNTs | 284.8 | 285.3 | 286.3 | – | 291.3 | 65.6 | 8.4 | 18.2 | – | 7.7 |
Interface | Minimal Distance, Å | Adsorption Energy, meV/atom |
---|---|---|
NiO(200)–CNT | 2.66 | 78 |
CuO(110)–CNT | 3.03 | 65 |
Ni(OH)2 (001)–CNT | 2.37 | 68 |
Cu2O(110)–CNT | 2.98 | 69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalovega, G.E.; Brzhezinskaya, M.; Dmitriev, V.O.; Shmatko, V.A.; Ershov, I.V.; Ulyankina, A.A.; Chernysheva, D.V.; Smirnova, N.V. Interfacial Interaction in MeOx/MWNTs (Me–Cu, Ni) Nanostructures as Efficient Electrode Materials for High-Performance Supercapacitors. Nanomaterials 2024, 14, 947. https://doi.org/10.3390/nano14110947
Yalovega GE, Brzhezinskaya M, Dmitriev VO, Shmatko VA, Ershov IV, Ulyankina AA, Chernysheva DV, Smirnova NV. Interfacial Interaction in MeOx/MWNTs (Me–Cu, Ni) Nanostructures as Efficient Electrode Materials for High-Performance Supercapacitors. Nanomaterials. 2024; 14(11):947. https://doi.org/10.3390/nano14110947
Chicago/Turabian StyleYalovega, Galina E., Maria Brzhezinskaya, Victor O. Dmitriev, Valentina A. Shmatko, Igor V. Ershov, Anna A. Ulyankina, Daria V. Chernysheva, and Nina V. Smirnova. 2024. "Interfacial Interaction in MeOx/MWNTs (Me–Cu, Ni) Nanostructures as Efficient Electrode Materials for High-Performance Supercapacitors" Nanomaterials 14, no. 11: 947. https://doi.org/10.3390/nano14110947