Phytochemical and Pharmacological Properties of Capparis spinosa as a Medicinal Plant
Abstract
:1. Introduction
1.1. Search Strategy
1.2. Taxonomic Revision of Genus Capparis
1.3. Cultivation of C. spinosa
1.4. Traditional Uses of C. spinosa
2. Phytochemical Properties of C. spinosa
2.1. Aerial Parts
2.2. Roots
2.3. Seeds
3. Pharmacological Effects of C. spinosa
3.1. Anti-Diabetic
3.2. Anti-Obesity
3.3. Cholesterol-Lowering
3.4. Anti-Hypertensive
3.5. Anti-Microbial
3.6. Anti-Inflammatory
3.7. Antihepatotoxic
3.8. Other Pharmacological Properties
3.9. Adverse Effects
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Locatelli, C.; Melucci, D.; Locatelli, M. Toxic metals in herbal medicines. A review. Curr. Bioact. Compd. 2014, 10, 181–188. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Regulatory Situation of Herbal Medicines: A Worldwide Review; World Health Organization (WHO): Geneva, Switzerland, 2013. [Google Scholar]
- Locatelli, M.; Zengin, G.; Uysal, A.; Carradori, S.; De Luca, E.; Bellagamba, G.; Aktumsek, A.; Lazarova, I. Multicomponent pattern and biological activities of seven asphodeline taxa: Potential sources of natural-functional ingredients for bioactive formulations. J. Enzyme Inhib. Med. Chem. 2017, 32, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Gunjan, M.; Naing, T.W.; Saini, R.S.; Ahmad, A.; Naidu, J.R.; Kumar, I. Marketing trends & future prospects of herbal medicine in the treatment of various disease. World J. Pharm. Res. 2015, 4, 132–155. [Google Scholar]
- Hall, J.C.; Sytsma, K.J.; Iltis, H.H. Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am. J. Bot. 2002, 89, 1826–1842. [Google Scholar] [CrossRef] [PubMed]
- Ao, M.; Gao, Y.; Yu, L. Advances in studies on constituents and their pharmacological activities of Capparis spinosa. Chin. Tradit. Herb. Drug 2007, 38, 463–467. [Google Scholar]
- Asl, M.B.; Talebpour, A.H.; Alijanpour, R. Introducing of medicinal plants in Maragheh, Eastern Azerbaijan province (northwestern Iran). J. Med. Plants Res. 2012, 6, 4208–4220. [Google Scholar]
- Tlili, N.; Elfalleh, W.; Saadaoui, E.; Khaldi, A.; Triki, S.; Nasri, N. The caper (Capparis L.): Ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia 2011, 82, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Barbera, G.; Di Lorenzo, R. The caper culture in Italy. Acta Hortic. 1984, 144, 167–171. [Google Scholar] [CrossRef]
- Ramezani-Gask, M.; Bahrani, M.J.; Shekafandeh, A.; Salehi, H.; Taghvaei, M.; Al-Ahmadi, M.J. A comparison of different propagation methods of common caper-bush (Capparis spinosa L.) as a new horticultural crop. Int. J. Plant Dev. Biol. 2008, 2, 106–110. [Google Scholar]
- Inocencio, C.; Rivera, D.; Alcaraz, F.; Tomás-Barberán, F.A. Flavonoid content of commercial capers (Capparis spinosa, C. Sicula and C. Orientalis) produced in Mediterranean countries. Eur. Food Res. Technol. 2000, 212, 70–74. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Maggi, F.; Daglia, M.; Habtemariam, S.; Rastrelli, L.; Nabavi, S.M. Pharmacological effects of Capparis spinosa L. Phytother. Res. 2016, 30, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Chedraoui, S.; Abi-Rizk, A.; El-Beyrouthy, M.; Chalak, L.; Ouaini, N.; Rajjou, L. Capparis spinosa L. in a systematic review: A xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. Front. Plant Sci. 2017, 8, 1845. [Google Scholar] [CrossRef] [PubMed]
- Fici, S. A taxonomic revision of the Capparis spinosa group (Capparaceae) from the Mediterranean to Central Asia. Phytotaxa 2014, 174, 1–24. [Google Scholar] [CrossRef]
- Fici, S. A taxonomic revision of the Capparis spinosa group (Capparaceae) from eastern Africa to Oceania. Phytotaxa 2015, 203, 24–36. [Google Scholar] [CrossRef]
- Aichi-Yousfi, H.; Bahri, B.A.; Medini, M.; Rouz, S.; Nejib Rejeb, M.; Ghrabi-Gammar, Z. Genetic diversity and population structure of six species of Capparis in Tunisia using AFLP markers. C. R. Biol. 2016, 339, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Sakcali, M.; Bahadir, H.; Ozturk, M. Ecophysiology of Capparis spinosa L.: A plant suitable for combating desertification. Pak. J. Bot. 2008, 40, 1481–1486. [Google Scholar]
- Özdemir, F.; Öztürk, M. Studies on the autecology of Capparis L. Species distributed in west Anatolia. Turk. J. Bot. 1996, 20, 117–127. [Google Scholar]
- Rhizopoulou, S.; Psaras, G.K. Development and structure of drought-tolerant leaves of the Mediterranean shrub Capparis spinosa L. Ann. Bot. 2003, 92, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Mansour, R.B.; Jilani, I.B.H.; Bouaziz, M.; Gargouri, B.; Elloumi, N.; Attia, H.; Ghrabi-Gammar, Z.; Lassoued, S. Phenolic contents and antioxidant activity of ethanolic extract of Capparis spinosa. Cytotechnology 2016, 68, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Afzal, N.; Awan, M.R.; Khan, T.S.; Khanum, A.G.; Tariq, S. Ethno-botanical studies from northern Pakistan. J. Ayub. Med. Coll. Abbottabad. 2009, 21, 52–57. [Google Scholar] [PubMed]
- Mahboubi, M.; Mahboubi, A. Antimicrobial activity of Capparis spinosa as its usages in traditional medicine. Herba Pol. 2014, 60, 39–48. [Google Scholar] [CrossRef]
- Fu, X.P.; Aisa, H.A.; Abdurahim, M.; Yili, A.; Aripova, S.F.; Tashkhodzhaev, B. Chemical composition of Capparis spinosa fruit. Chem. Nat. Compd. 2007, 43, 181–183. [Google Scholar] [CrossRef]
- Çaliş, İ.; Kuruüzüm, A.; Lorenzetto, P.A.; Ruedi, P. (6S)-hydroxy-3-oxo-α-ionol glucosides from Capparis spinosa fruits. Phytochemistry 2002, 59, 451–457. [Google Scholar] [CrossRef]
- Çaliş, İ.; Kuruüzüm, A.; Rüedi, P. 1H-Indole-3 acetonitrile glycosides from Capparis spinosa fruits. Phytochemistry 1999, 50, 1205–1208. [Google Scholar] [CrossRef]
- Zhou, H.; Jian, R.; Kang, J.; Huang, X.; Li, Y.; Zhuang, C.; Yang, F.; Zhang, L.; Fan, X.; Wu, T.; et al. Anti-inflammatory effects of caper (Capparis spinosa L.) fruit aqueous extract and the isolation of main phytochemicals. J. Agric. Food Chem. 2010, 58, 12717–12721. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, Z.; Aghel, N.; Keyghobadi, H. Rutin from different parts of Capparis spinosa growing wild in Khuzestan/Iran. Pak. J. Biol. Sci. 2008, 11, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, M.; Lazaro, M.J.; Alvarruiz, A.; Giner, V. Composition of capers (Capparis spinosa): Influence of cultivar, size and harvest date. J. Food Sci. 1992, 57, 1152–1154. [Google Scholar] [CrossRef]
- Siracusa, L.; Kulisic-Bilusic, T.; Politeo, O.; Krause, I.; Dejanovic, B.; Ruberto, G. Phenolic composition and antioxidant activity of aqueous infusions from Capparis spinosa L. and Crithmum maritimum L. before and after submission to a two-step in vitro digestion model. J. Agric. Food Chem. 2011, 59, 12453–12459. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, M.; El-Ansari, M.A.; Saleh, N.A.M. Quercetin triglycoside from Capparis spinosa. Fitoterapia 2000, 71, 46–49. [Google Scholar] [CrossRef]
- Afsharypuor, S.; Jeiran, K.; Jazy, A.A. First investigation of the flavour profiles of the leaf, ripe fruit and root of Capparis spinosa var. Mucronifolia from Iran. Pharm. Acta Helv. 1998, 72, 307–309. [Google Scholar] [CrossRef]
- Khatib, M.; Pieraccini, G.; Innocenti, M.; Melani, F.; Mulinacci, N. An insight on the alkaloid content of Capparis spinosa L. root by HPLC-DAD-MS, MS/MS and 1H qNMR. J. Pharm. Biomed. Anal. 2016, 123, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Boga, C.; Forlani, L.; Calienni, R.; Hindley, T.; Hochkoeppler, A.; Tozzi, S.; Zanna, N. On the antibacterial activity of roots of Capparis spinosa L. Nat. Prod. Res. 2011, 25, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Akgül, A.; Özcan, M. Some compositional characteristics of capers (Capparis spp.) seed and oil. Grasas y Aceites 1999, 50, 49–52. [Google Scholar] [CrossRef]
- Gupta, S.A.; Chakrabarty, M.M. Composition of the seed fats of the Capparidaceae family. J. Sci. Food Agric. 1964, 15, 69–73. [Google Scholar] [CrossRef]
- Matthaus, B.; Ozcan, M. Glucosinolates and fatty acid, sterol, and tocopherol composition of seed oils from Capparis spinosa Var. spinosa and Capparis ovata Desf. Var. canescens (Coss.) Heywood. J. Agric. Food Chem. 2005, 53, 7136–7141. [Google Scholar] [PubMed]
- Mollica, A.; Zengin, G.; Locatelli, M.; Stefanucci, A.; Mocan, A.; Macedonio, G.; Carradori, S.; Onaolapo, O.; Onaolapo, A.; Adegoke, J.; et al. Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: In vivo and in vitro evaluation of its nutraceutical potential. J. Funct. Foods 2017, 35, 32–42. [Google Scholar] [CrossRef]
- Vahid, H.; Rakhshandeh, H.; Ghorbani, A. Antidiabetic properties of Capparis spinosa L. and its components. Biomed. Pharmacother. 2017, 92, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Tlili, N.; Khaldi, A.; Triki, S.; Munné-Bosch, S. Phenolic compounds and vitamin antioxidants of caper (Capparis spinosa). Plant Foods Hum. Nutr. 2010, 65, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Dekanski, D.; Ristić, S.; Radonjić, N.V.; Petronijević, N.D.; Dekanski, A.; Mitrović, D.M. Olive leaf extract modulates cold restraint stress-induced oxidative changes in rat liver. J. Serb. Chem. Soc. 2011, 76, 1207–1218. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [PubMed]
- Korkmaz, A.; Kolankaya, D. Protective effect of rutin on the ischemia/reperfusion induced damage in rat kidney. J. Surg. Res. 2010, 164, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Milde, J.; Elstner, E.F.; Grassmann, J. Synergistic inhibition of low-density lipoprotein oxidation by rutin, gamma-terpinene, and ascorbic acid. Phytomedicine 2004, 11, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Birhman, K.; Raheja, I.; Sharma, S.K.; Kar, H.K. Quercetin: A wonder bioflavonoid with therapeutic potential in disease management. Asian Pac. J. Trop. Dis. 2016, 6, 248–252. [Google Scholar] [CrossRef]
- Yang, T.; Wang, C.; Chou, G.; Wu, T.; Cheng, X.; Wang, Z. New alkaloids from Capparis spinosa: Structure and X-ray crystallographic analysis. Food Chem. 2010, 123, 705–710. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, D.B.; He, J.B.; Guan, K.Y.; Zhu, H.J. A novel tetrahydroquinoline acid and a new racemic benzofuranone from Capparis spinosa L., a case study of absolute configuration determination using quantum methods. Tetrahedron 2014, 70, 869–873. [Google Scholar] [CrossRef]
- Zhou, H.F.; Xie, C.; Jian, R.; Kang, J.; Li, Y.; Zhuang, C.L.; Yang, F.; Zhang, L.L.; Lai, L.; Wu, T.; et al. Biflavonoids from caper (Capparis spinosa L.) fruits and their effects in inhibiting NF-kappa B activation. J. Agric. Food Chem. 2011, 59, 3060–3065. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, M.; El-Ansari, M.A.; Saleh, N.A.M. Flavonoids of four cleome and three Capparis species. Biochem. Syst. Ecol. 1997, 25, 161–166. [Google Scholar] [CrossRef]
- Matthaus, B.; Ozcan, M. Glucosinolate composition of young shoots and flower buds of capers (Capparis species) growing wild in turkey. J. Agric. Food Chem. 2002, 50, 7323–7325. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gao, H.; Tang, Z.; Song, X.; Wu, L. Several phenolic acids from the fruit of Capparis spinosa. Asian J. Tradit. Med. 2006, 1, 101–104. [Google Scholar]
- Gadgoli, C.; Mishra, S.H. Antihepatotoxic activity of p-methoxy benzoic acid from Capparis spinosa. J. Ethnopharmacol. 1999, 66, 187–192. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Cioni, P.L.; Giusti, G.; Pistelli, L.; Flamini, G. Patterns in volatile emission of different aerial parts of caper (Capparis spinosa L.). Chem. Biodivers. 2016, 13, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.P.; Wu, T.; Abdurahim, M.; Su, Z.; Hou, X.L.; Aisa, H.A.; Wu, H. New spermidine alkaloids from Capparis spinosa roots. Phytochem. Lett. 2008, 1, 59–62. [Google Scholar] [CrossRef]
- Ma, Z.F.; Zhang, H. Phytochemical constituents, health benefits, and industrial applications of grape seeds: A mini-review. Antioxidants 2017, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.F.; Lee, Y.Y. Virgin coconut oil and its cardiovascular health benefits. Nat. Prod. Commun. 2016, 11, 1151–1152. [Google Scholar]
- Willett, W.C. Dietary fats and coronary heart disease. J. Intern. Med. 2012, 272, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Eddouks, M.; Lemhadri, A.; Michel, J.B. Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J. Ethnopharmacol. 2005, 98, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Lemhadri, A.; Eddouks, M.; Sulpice, T.; Burcelin, R. Anti-hyperglycaemic and anti-obesity effects of Capparis spinosa and Chamaemelumnobile aqueous extracts in HFD mice. Am. J. Pharmacol. Toxicol. 2007, 2, 106–110. [Google Scholar]
- Huseini, H.F.; Hasani-Rnjbar, S.; Nayebi, N.; Heshmat, R.; Sigaroodi, F.K.; Ahvazi, M.; Alaei, B.A.; Kianbakht, S. Capparis spinosa L. (caper) fruit extract in treatment of type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Complement. Ther. Med. 2013, 21, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Jalali, M.T.; Mohammadtaghvaei, N.; Larky, D.A. Investigating the effects of Capparis spinosa on hepatic gluconeogenesis and lipid content in streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2016, 84, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.N.; Eddouks, M.; Michel, J.B.; Sulpice, T.; Hajji, L. Cardiovascular effect of Capparis spinosa aqueous extract. Part III: Antihypertensive effect in spontaneously hypertensive rats. Am. J. Pharmacol. Toxicol. 2007, 2, 111–115. [Google Scholar] [CrossRef]
- Gull, T.; Sultana, B.; Bhatti, I.A.; Jamil, A. Antibacterial potential of Capparis spinosa and Capparis decidua extracts. Int. J. Agric. Biol. 2015, 17, 727–733. [Google Scholar] [CrossRef]
- Masadeh, M.M.; Alkofahi, A.S.; Alzoubi, K.H.; Tumah, H.N.; Bani-Hani, K. Anti-Helicobactor pylori activity of some jordanian medicinal plants. Pharm. Biol. 2014, 52, 566–569. [Google Scholar] [CrossRef] [PubMed]
- El Azhary, K.; Tahiri Jouti, N.; El Khachibi, M.; Moutia, M.; Tabyaoui, I.; El Hou, A.; Achtak, H.; Nadifi, S.; Habti, N.; Badou, A. Anti-inflammatory potential of Capparis spinosa L. in vivo in mice through inhibition of cell infiltration and cytokine gene expression. BMC Complement. Altern. Med. 2017, 17, 81. [Google Scholar] [CrossRef] [PubMed]
- Moutia, M.; Azhary, K.; Elouaddari, A.; Jahid, A.; Jamal Eddine, J.; Seghrouchni, F.; Habti, N.; Badou, A. Capparis spinosa L. promotes anti-inflammatory response in vitro through the control of cytokine gene expression in human peripheral blood mononuclear cells. BMC Immunol. 2016, 17, 26. [Google Scholar] [CrossRef] [PubMed]
- Maresca, M.; Micheli, L.; Di Cesare Mannelli, L.; Tenci, B.; Innocenti, M.; Khatib, M.; Mulinacci, N.; Ghelardini, C. Acute effect of Capparis spinosa root extracts on rat articular pain. J. Ethnopharmacol. 2016, 193, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Hamuti, A.; Li, J.; Zhou, F.; Aipire, A.; Ma, J.; Yang, J.; Li, J. Capparis spinosa fruit ethanol extracts exert different effects on the maturation of dendritic cells. Molecules 2017, 22, 97. [Google Scholar] [CrossRef] [PubMed]
- Kazemian, M.; Abad, M.; Haeri, M.R.; Ebrahimi, M.; Heidari, R. Anti-diabetic effect of Capparis spinosa L. root extract in diabetic rats. Avicenna J. Phytomed. 2015, 5, 325–332. [Google Scholar] [PubMed]
- Ness, G.C. Physiological feedback regulation of cholesterol biosynthesis: Role of translational control of hepatic HMG-CoA reductase and possible involvement of oxylanosterols. Biochim. Biophys. Acta 2015, 1851, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M. Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr. Rev. Food Sci. Food Saf. 2014, 13, 114–134. [Google Scholar] [CrossRef]
- Mazarei, F.; Jooyandeh, H.; Noshad, M.; Hojjati, M. Polysaccharide of caper (Capparis spinosa L.) leaf: Extraction optimization, antioxidant potential and antimicrobial activity. Int. J. Biol. Macromol. 2017, 95, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Mahasneh, A.M. Screening of some indigenous Qatari medicinal plants for antimicrobial activity. Phytother. Res. 2002, 16, 751–753. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.F.; Majid, N.A.; Yamaoka, Y.; Lee, Y.Y. Food allergy and Helicobacter pylori infection: A systematic review. Front. Microbiol. 2016, 7, 368. [Google Scholar] [CrossRef] [PubMed]
- Panico, A.; Cardile, V.; Garufi, F.; Puglia, C.; Bonina, F.; Ronsisvalle, G. Protective effect of Capparis spinosa on chondrocytes. Life Sci. 2005, 77, 2479–2488. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Lu, J.; Xin, H.; Zhang, L.; Wang, Y.; Tang, K. Anti-arthritic active fraction of Capparis spinosa L. fruits and its chemical constituents. Yakugaku Zasshi 2011, 131, 432–439. [Google Scholar] [CrossRef]
- Tel, J.; Benitez-Ribas, D.; Janssen, E.M.; Smits, E.L.J.; Jacobs, J.F.M. Dendritic cells as vaccines: Key regulators of tolerance and immunity. Mediators Inflamm. 2016, 2016, 5789725. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.C.; Di Meglio, P.; Nestle, F.O. Harnessing dendritic cells in inflammatory skin diseases. Semin. Immunol. 2011, 23, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Digvijaya; Garg, A.; Kumar, A. Effect of Capparis spinosa Linn. extract on lipopolysaccharide-induced cognitive impairment in rats. Indian J. Exp. Biol. 2016, 54, 126–132. [Google Scholar] [PubMed]
- Mohebali, N.; Shahzadeh Fazeli, S.A.; Ghafoori, H.; Farahmand, Z.; MohammadKhani, E.; Vakhshiteh, F.; Ghamarian, A.; Farhangniya, M.; Sanati, M.H. Effect of flavonoids rich extract of Capparis spinosa on inflammatory involved genes in amyloid-beta peptide injected rat model of Alzheimer’s disease. Nutr. Neurosci. 2016, 21, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Turgut, N.H.; Kara, H.; Arslanbas, E.; Mert, D.G.; Tepe, B.; Gungor, H. Effect of Capparis spinosa L. on cognitive impairment induced by d-galactose in mice via inhibition of oxidative stress. Turk. J. Med. Sci. 2015, 45, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Majd, S.; Power, J.H.; Grantham, H.J.M. Neuronal response in Alzheimer’s and Parkinson’s disease: The effect of toxic proteins on intracellular pathways. BMC Neurosci. 2015, 16, 69. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.K.; Ng, T.B. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine 2009, 16, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Sher, H.; Alyemeni, M.N. Ethnobotanical and pharmaceutical evaluation of Capparis spinosa L., validity of local folk and unani system of medicine. J. Med. Plants Res. 2010, 4, 1751–1756. [Google Scholar]
- Espin, J.C.; Gonzalez-Sarrias, A.; Tomas-Barberan, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef] [PubMed]
Treated Symptoms and Diseases |
---|
Toothache |
Fever |
Headache |
Menstruation |
Rheumatism |
Convulsions |
Gout |
Skin disease |
Kidney disease |
Liver disease |
Diabetes |
Hemorhoids |
Ulcers |
Sciatica |
Parts of C. spinosa Plant | Compounds Identified | Extraction Method | References |
---|---|---|---|
Aerial parts | Cappariloside A | Chromatographic method | Fu et al. (2007) [23] |
Stachydrin | |||
Hypoxanthine | |||
Uracil | |||
1H-indole-3-acetonitrile 4-O-β-(6′-O-β-glucopyranosyl)-glucopyranoside | Spectroscopic method | Çaliş et al. (1999) [25] | |
1H-indole-3-acetonitrile 4-O-β-glucopyranoside | |||
Indole-3 acetonitrile glycosides | |||
Capparine A | Spectroscopic method | Zhou et al. (2010) [26] | |
Capparine B | |||
Flazin | |||
Guanosine | |||
1H-indole-3-carboxaldehyde | |||
4-hydroxy-1H-indole-3-carboxaldehyde | |||
Apigenin | |||
Kaempferol | |||
Thevetiaflavone | |||
Capparisine A | Chromatographic method | Yang et al. (2010) [45] | |
Capparisine B | |||
Capparisine C | |||
Tetrahydroquinoline | Chromatographic method | Zhang et al. (2014) [46] | |
Benzofuranone enantiomers 2-(4-hydroxy-2-oxo-2,3-dihydrobenzofuran-3-yl)acetonitrile | |||
Rutin | Chromatographic method | Mollica et al. (2017) [37] | |
Kaempferol-3-glucoside | Chromatographic method | Rodrigo et al. (1992) [28] | |
Kaempferol-3 rutinoside | |||
Kaempferol-3-rhamnorutinoside | |||
Kaempferol 3-O-rutinoside | Chromatographic method | Siracusa et al. (2011) [29] | |
Isorhamnetin 3-O-rutinoside | |||
Quercetin 3-O-glucoside | Chromatographic method | Sharaf et al. (2000) [30] | |
Quercetin 3-O-glucoside-7-O-rhamnoside | |||
Quercetin 3-O-[6′′′-α-l-rhamnosyl-6′′-β-d-glucosyl]-β-d-glucoside | |||
Kaempferol 3-rhamnosyl-rutinoside | Chromatographic method | Inocencio et al. (2000) [11] | |
Kaempferol 3-rutinoside | |||
Quercetin 3-rutinoside | |||
Ginkgetin | Spectroscopic method | Zhou et al. (2011) [47] | |
Isoginkgetin | |||
Sakuranetin | |||
Quercetin-3-O-rutinoside | |||
Quercetin-7-rutinoside | Chromatographic method | Sharaf et al. (1997) [48] | |
Glucocapparin | Chromatographic method | Matthaus & Ozcan (2002) [49] | |
Roots | Capparispine | Spectroscopic method | Fu et al. (2008) [27] |
Cadabicine 26-O-β-d-glucoside | |||
Capparispine 26-O-β-d-glucoside | |||
Stachydrine | Chromatographic method | Khatib et al. (2016) [32] | |
3-hydroxy-7-methoxy-2-methyl-4H-1,4-benzoxazine-4-carbaldehyde | Chromatographic method | Boga et al. (2011) [33] | |
Seeds | Glucocapparin | Chromatographic method | Matthaus & Ozcan (2002) [49] |
Pharmalogical Effects | Models | Parts of C. spinosa Plant Used | References |
---|---|---|---|
Anti-diabetic | Streptozotocin-induced diabetic rats | Fruits | Eddouks et al. (2005) [57] |
Highly glucose tolerant and high fat diet-fed mice | Fruits | Lemhadri et al. (2007) [58] | |
Type 2 diabetic patients | Fruits | Huseini et al. (2013) [59] | |
Streptozotocin-induced diabetic rats | Leaves | Mollica et al. (2017) [37] | |
Anti-obesity | Streptozotocin-induced diabetic rats | Fruits | Eddouks et al. (2005) [57] |
Highly glucose tolerant and high fat diet-fed mice | Fruits | Lemhadri et al. (2007) [58] | |
Cholesterol-lowering | Streptozotocin-induced diabetic rats | Fruits | Eddouks et al. (2005) [57] |
Streptozotocin-induced diabetic rats | Fruits | Jalali et al. (2016) [60] | |
Type 2 diabetic patients | Fruits | Huseini et al. (2013) [59] | |
Anti-hypertensive | Spontaneously hypertensive rats | Fruits | Ali et al. (2007) [61] |
Antimicrobial | Cell culture | Roots | Boga et al. (2011) [33] |
Cell culture | Roots and fruits | Mahboubi & Mahboubi (2014) [22] | |
Cell culture | Stem barks and shoots | Gull et al. (2015) [62] | |
Cell culture | Aerial parts | Masadeh et al. (2014) [63] | |
Anti-inflammatory | Swiss albino mice | Leaves | El Azhary et al. (2017) [64] |
Human peripheral blood mononuclear cells | Leaves | Moutia et al. (2016) [65] | |
Male Sprague-Dawley rats | Roots | Maresca et al. (2016) [66] | |
Mouse-bone marrow derived dendritic cells | Fruits | Hamuti et al. (2017) [67] | |
Antihepatotoxic | Albino rats of Wistar strain | Aerial parts | Gadgoli & Mishra (1999) [51] |
Diabetic rats | Kazemian et al. (2015) [68] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ma, Z.F. Phytochemical and Pharmacological Properties of Capparis spinosa as a Medicinal Plant. Nutrients 2018, 10, 116. https://doi.org/10.3390/nu10020116
Zhang H, Ma ZF. Phytochemical and Pharmacological Properties of Capparis spinosa as a Medicinal Plant. Nutrients. 2018; 10(2):116. https://doi.org/10.3390/nu10020116
Chicago/Turabian StyleZhang, Hongxia, and Zheng Feei Ma. 2018. "Phytochemical and Pharmacological Properties of Capparis spinosa as a Medicinal Plant" Nutrients 10, no. 2: 116. https://doi.org/10.3390/nu10020116