Efficient Bio-Oxidation of Cellobiose with Engineered Gluconobacter oxydans to Provide Highly Concentrated Cellobionic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Development of Gluconobacter oxydans BP9.1 pta-mGDH
2.2.1. Bacterial Strains and Culture Methods
2.2.2. Isolation of Genomic DNA
2.2.3. Construction of Expression Plasmid
2.2.4. Transformation of G. oxydans
2.3. Maintenance
2.4. Pre-Culture Preparation
2.5. Production of Engineered G. oxydans BP9.1 pta-mGDH Cells
2.6. Biotransformation in Stirred Tank Bioreactors
2.7. Determination of Oxygen Uptake Rates
2.8. Offline Analytics
2.9. Determination of Volumetric and Cell-Specific Product Formation Rates
3. Results and Discussion
3.1. Production of Cellobionate with G. oxydans BP9.1 pta-mGDH
3.2. Variation of the Initial Cellobiose Concentration
3.3. Variation of the Initial Concentrations of G. oxydans BP9.1 pta-mGDH
3.4. Providing Highly Concentrated Cellobionate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieringer, E.; García Vázquez, U.; Klein, L.; Moretó Bravo, N.; Tobler, M.; Weuster-Botz, D. Bioproduction and Applications of Aldobionic Acids with a Focus on Maltobionic and Cellobionic Acid. Bioprocess. Biosyst. Eng. 2023, 46, 921–940. [Google Scholar] [CrossRef] [PubMed]
- Mehtiö, T.; Toivari, M.; Wiebe, M.G.; Harlin, A.; Penttilä, M.; Koivula, A. Production and Applications of Carbohydrate-Derived Sugar Acids as Generic Biobased Chemicals. Crit. Rev. Biotechnol. 2016, 36, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.J.; Van Scott, E.J. Alpha-Hydroxyacids and Carboxylic Acids. J. Cosmet. Dermat. 2004, 3, 76–87. [Google Scholar] [CrossRef]
- Oh, Y.-R.; Jang, Y.-A.; Lee, S.S.; Kim, J.-H.; Hong, S.H.; Han, J.J.; Eom, G.T. Enhancement of Lactobionic Acid Productivity by Homologous Expression of Quinoprotein Glucose Dehydrogenase in Pseudomonas Taetrolens. J. Agric. Food Chem. 2020, 68, 12336–12344. [Google Scholar] [CrossRef] [PubMed]
- Sarenkova, I.; Ciprovica, I. The Current Status and Future Perspectives of Lactobionic Acid Production: A Review. In Proceedings of the Annual 24th ISC Research for Rural Development, Jelgava, Latvia, 16–18 May 2018; Volume 1, pp. 233–239. [Google Scholar]
- Cardoso, T.; Marques, C.; Dagostin, J.L.A.; Masson, M.L. Lactobionic Acid as a Potential Food Ingredient: Recent Studies and Applications. J. Food Sci. 2019, 84, 1672–1681. [Google Scholar] [CrossRef]
- Alonso, S.; Rendueles, M.; Díaz, M. Bio-Production of Lactobionic Acid: Current Status, Applications and Future Prospects. Biotechnol. Adv. 2013, 31, 1275–1291. [Google Scholar] [CrossRef]
- Enteshari, M.; Martínez-Monteagudo, S.I. One-Pot Synthesis of Lactose Derivatives from Whey Permeate. Foods 2020, 9, 784. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Tokarev, A.V.; Murzina, E.V.; Campo, B.; Heikkilä, T.; Brozinski, J.-M.; Wolf, D.; Murzin, D.Y. Kinetics of Lactose and Rhamnose Oxidation over Supported Metal Catalysts. Phys. Chem. Chem. Phys. 2011, 13, 9268–9280. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-R.; Jang, Y.-A.; Hong, S.H.; Eom, G.T. High-Level Production of Maltobionic Acid from High-Maltose Corn Syrup by Genetically Engineered Pseudomonas Taetrolens. Biotechnol. Rep. 2020, 28, e00558. [Google Scholar] [CrossRef]
- Oh, Y.-R.; Song, J.K.; Eom, G.T. Efficient Production of Cellobionic Acid Using Whole-Cell Biocatalyst of Genetically Modified Pseudomonas Taetrolens. Bioprocess. Biosyst. Eng. 2022, 45, 1057–1064. [Google Scholar] [CrossRef]
- Hildebrand, A.; Szewczyk, E.; Lin, H.; Kasuga, T.; Fan, Z. Engineering Neurospora Crassa for Improved Cellobiose and Cellobionate Production. Appl. Environ. Microbiol. 2015, 81, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Kiryu, T.; Kiso, T.; Nakano, H.; Murakami, H. Lactobionic and Cellobionic Acid Production Profiles of the Resting Cells of Acetic Acid Bacteria. Biosci. Biotechnol. Biochem. 2015, 79, 1712–1718. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, A.; Kasuga, T.; Fan, Z. Production of Cellobionate from Cellulose Using an Engineered Neurospora Crassa Strain with Laccase and Redox Mediator Addition. PLoS ONE 2015, 10, e0123006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xu, C.; Shen, Q.; Kasuga, T.; Wu, W.; Szewczyk, E.; Ma, D.; Fan, Z. Characterization of Two Cellobiose Dehydrogenases and Comparison of Their Contributions to Total Activity in Neurospora Crassa. Int. Biodeterior. Biodegrad. 2013, 82, 24–32. [Google Scholar] [CrossRef]
- Wu, W.; Hildebrand, A.; Kasuga, T.; Xiong, X.; Fan, Z. Direct Cellobiose Production from Cellulose Using Sextuple Beta-Glucosidase Gene Deletion Neurospora Crassa Mutants. Enzym. Microb. Technol. 2013, 52, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Hildebrand, A.; Kasuga, T.; Fan, Z. Engineering Neurospora Crassa for Cellobionate Production Directly from Cellulose without Any Enzyme Addition. Enzym. Microb. Technol. 2017, 99, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Tao, L.; Russell, P.; Britt, R.D.; Kasuga, T.; Lü, X.; Fan, Z. The Role of Lignin in the Conversion of Wheat Straw to Cellobionic Acid by Neurospora Crassa HL. Ind. Crops Prod. 2022, 188, 115650. [Google Scholar] [CrossRef]
- Yoo, Y.; Oh, Y.-R.; Eom, G.T. Valorization of Cellulose in Waste Paper into Value-Added Cellobionic Acid by Genetically Engineered Pseudomonas Taetrolens. Ind. Crops Prod. 2022, 186, 115186. [Google Scholar] [CrossRef]
- Peters, B.; Mientus, M.; Kostner, D.; Junker, A.; Liebl, W.; Ehrenreich, A. Characterization of Membrane-Bound Dehydrogenases from Gluconobacter oxydans 621H via Whole-Cell Activity Assays Using Multideletion Strains. Appl. Microbiol. Biotechnol. 2013, 97, 6397–6412. [Google Scholar] [CrossRef] [PubMed]
- Bories, A.; Claret, C.; Soucaille, P. Kinetic Study and Optimisation of the Production of Dihydroxyacetone from Glycerol Using Gluconobacter oxydans. Process Biochem. 1991, 26, 243–248. [Google Scholar] [CrossRef]
- Hekmat, D.; Bauer, R.; Fricke, J. Optimization of the Microbial Synthesis of Dihydroxyacetone from Glycerol with Gluconobacter oxydans. Bioprocess. Biosyst. Eng. 2003, 26, 109–116. [Google Scholar] [CrossRef] [PubMed]
- La China, S.; Zanichelli, G.; De Vero, L.; Gullo, M. Oxidative Fermentations and Exopolysaccharides Production by Acetic Acid Bacteria: A Mini Review. Biotechnol. Lett. 2018, 40, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Burger, C.; Kessler, C.; Gruber, S.; Ehrenreich, A.; Liebl, W.; Weuster-Botz, D. L-Erythrulose Production with a Multideletion Strain of Gluconobacter oxydans. Appl. Microbiol. Biotechnol. 2019, 103, 4393–4404. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, T.; Grüssner, A. Eine Ergiebige Synthese Der L-Ascorbinsäure (C-Vitamin). Helv. Chim. Acta 1934, 17, 311–328. [Google Scholar] [CrossRef]
- Pappenberger, G.; Hohmann, H.-P. Industrial Production of L-Ascorbic Acid (Vitamin C) and d-Isoascorbic Acid. In Biotechnology of Food and Feed Additives; Zorn, H., Czermak, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 143–188. ISBN 978-3-662-43761-2. [Google Scholar]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012; ISBN 978-1-936113-41-5. [Google Scholar]
- Mientus, M.; Kostner, D.; Peters, B.; Liebl, W.; Ehrenreich, A. Characterization of Membrane-Bound Dehydrogenases of Gluconobacter oxydans 621H Using a New System for Their Functional Expression. Appl. Microbiol. Biotechnol. 2017, 101, 3189–3200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Werling, U.; Edelmann, W. SLiCE: A Novel Bacterial Cell Extract-Based DNA Cloning Method. Nucleic Acids Res. 2012, 40, e55. [Google Scholar] [CrossRef] [PubMed]
- Kostner, D.; Peters, B.; Mientus, M.; Liebl, W.; Ehrenreich, A. Importance of codB for New codA-Based Markerless Gene Deletion in Gluconobacter Strains. Appl. Microbiol. Biotechnol. 2013, 97, 8341–8349. [Google Scholar] [CrossRef]
- Cellobionic Acid|534-41-8. Available online: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB51365060.htm (accessed on 9 July 2024).
- Ano, Y.; Shinagawa, E.; Adachi, O.; Toyama, H.; Yakushi, T.; Matsushita, K. Selective, High Conversion of D-Glucose to 5-Keto-D-Gluoconate by Gluconobacter Suboxydans. Biosci. Biotechnol. Biochem. 2011, 75, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Merfort, M.; Herrmann, U.; Bringer-Meyer, S.; Sahm, H. High-Yield 5-Keto-d-Gluconic Acid Formation Is Mediated by Soluble and Membrane-Bound Gluconate-5-Dehydrogenases of Gluconobacter oxydans. Appl. Microbiol. Biotechnol. 2006, 73, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Elfari, M.; Ha, S.-W.; Bremus, C.; Merfort, M.; Khodaverdi, V.; Herrmann, U.; Sahm, H.; Görisch, H. A Gluconobacter oxydans Mutant Converting Glucose Almost Quantitatively to 5-Keto-d-Gluconic Acid. Appl. Microbiol. Biotechnol. 2005, 66, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Prust, C.; Hoffmeister, M.; Liesegang, H.; Wiezer, A.; Fricke, W.F.; Ehrenreich, A.; Gottschalk, G.; Deppenmeier, U. Complete Genome Sequence of the Acetic Acid Bacterium Gluconobacter oxydans. Nat. Biotechnol. 2005, 23, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Deppenmeier, U.; Ehrenreich, A. Physiology of Acetic Acid Bacteria in Light of the Genome Sequence of Gluconobacter oxydans. Microb. Physiol. 2009, 16, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-R.; Eom, G.T. Efficient Production of Cellobionic Acid from Cellobiose by Genetically Modified Pseudomonas Taetrolens. Biochem. Eng. J. 2022, 178, 108282. [Google Scholar] [CrossRef]
- Malvessi, E.; Carra, S.; Pasquali, F.C.; Kern, D.B.; da Silveira, M.M.; Ayub, M.A.Z. Production of Organic Acids by Periplasmic Enzymes Present in Free and Immobilized Cells of Zymomonas Mobilis. J. Ind. Microbiol. Biotechnol. 2012, 40, 1–10. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.C.; da Silva, L.M.; Carra, S.; Flores, M.; Puton, B.M.; Malvessi, E.; Valduga, E.; Zeni, J. High-Sodium Maltobionate Production by Immobilized Zymomonas Mobilis Cells in Polyurethane. Bioprocess. Biosyst. Eng. 2022, 45, 1465–1476. [Google Scholar] [CrossRef] [PubMed]
Name | 5′–3′ Sequence | Application |
---|---|---|
pta_pADH_for | CCATGATTACGCCAAGCGTTATTTCTCTTTAGGATCGGGCAG | Amplification of pta-mGDH from P. taetrolens with overhangs |
pta_pADH_rev | ACAAAAAGGACAGTTGGATCATGAGTACGCAAGCGAAAGG | |
pADH_pta_for | CTGCCCGATCCTAAAGAGAAATAACGCTTGGCGTAATCATGG | Amplification of pADH plasmid backbone with overhangs |
pADH_pta_rev | CCTTTCGCTTGCGTACTCATGATCCAACTGTCCTTTTTGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieringer, E.; Pütthoff, L.; Zimmermann, A.; de Souza Góes, M.; Yilmaz, U.; Ehrenreich, A.; Liebl, W.; Weuster-Botz, D. Efficient Bio-Oxidation of Cellobiose with Engineered Gluconobacter oxydans to Provide Highly Concentrated Cellobionic Acid. Processes 2024, 12, 1464. https://doi.org/10.3390/pr12071464
Bieringer E, Pütthoff L, Zimmermann A, de Souza Góes M, Yilmaz U, Ehrenreich A, Liebl W, Weuster-Botz D. Efficient Bio-Oxidation of Cellobiose with Engineered Gluconobacter oxydans to Provide Highly Concentrated Cellobionic Acid. Processes. 2024; 12(7):1464. https://doi.org/10.3390/pr12071464
Chicago/Turabian StyleBieringer, Emmeran, Lisa Pütthoff, Arne Zimmermann, Mariana de Souza Góes, Uraz Yilmaz, Armin Ehrenreich, Wolfgang Liebl, and Dirk Weuster-Botz. 2024. "Efficient Bio-Oxidation of Cellobiose with Engineered Gluconobacter oxydans to Provide Highly Concentrated Cellobionic Acid" Processes 12, no. 7: 1464. https://doi.org/10.3390/pr12071464