Remote Sensing of Snow Cover Using Spaceborne SAR: A Review
Abstract
:1. Introduction
2. Characteristics of Snow and SAR
2.1. SAR Sensor Characteristics
2.2. Interactions of Snow and SAR
3. SAR-Based Studies and Methods to Detect Snow
3.1. SAR Sensors Used for Detecting Snow
3.2. Spatial and Temporal Scale of Snow Cover Studies
3.3. Employed Methods to Monitor Snow Cover with SAR Data
3.3.1. Wet SCE Detection
- Mapping of snow cover fraction
- Refined reference image selection
3.3.2. Total SCE Detection
3.3.3. Wet and Dry SCE Detection
3.4. Algorithms Utilized to Investigate the Different Snow Cover Types
Machine Learning Classification Methods for Advanced SAR Information Analysis
3.5. Quality Assessment Methods for SAR-Based Snow Cover Products
4. Critical Auxiliary Data Necessary to Support Detecting SCE from SAR Data
4.1. Digital Elevation Model, Influence of Topography on SAR-Based Snow Detection
4.2. The Influence of Land Cover (Vegetation) on Snow Detection from SAR-Data
4.3. Utillization of Temperature and the Need for Snow Record Data
5. Discussion
5.1. The Developement of Spaceborne SAR Sensor Design
5.2. The Advances of SCE-Detection by SAR
5.3. Solutions for Addressing SAR-Vegetation Interaction
5.4. Influence of Filtering Algorithms
5.5. Reliability of Current Validation Approaches
5.6. Opportunities of Data Fusion for SAR-Based Snow Cover Detection
5.6.1. SAR Flight Direction (Ascending and Descending)
5.6.2. SAR Polarization (co- and Cross-Polarization)
5.6.3. Combination of SAR with Optical Imagery
5.6.4. Combination of SAR with Passive Microwave Imagery
5.7. Overall Trajectory of Spaceborne SAR-Based SCE Detection and Future Possibilities
5.8. Difficulties of Sensing Additional Snow Parameters
6. Conclusions
- (1)
- C-band SAR based algorithms dominate the studies, but the recent prosperity of X-band SAR provides a promising option. Due to the long-term preference of the C-band wavelength and its better capability to detect snow when compared to L-band SAR, C-band SAR has the longest history and is utilized for snow cover detection more often than any other sensor. However, many recent studies have proven that X-band is more suitable to detect dry snow; considering the amount of new and planned X-band missions, an increase in popularity of X-band based snow cover detection algorithms therefore can be expected for the near future.
- (2)
- Most studies focused on mountainous regions, especially the European Alps (32%) and the Asian Himalaya (31%), leading to an imbalanced distribution of study sites. The relatively small size of the study sites also implies the lack of utility of the recent wide-swath sensing mode.
- (3)
- The majority of studies investigated snow cover for one year with an average of two observations within this year to account for the dynamics of the snowpack. These temporal aspect-limited studies indicate that there is still a gap in understanding the long-term capability of SAR-based algorithms to detect snow consistently.
- (4)
- For detecting wet SCE, the majority of studies relied on backscattering-based approaches. More than 55% of the reviewed studies only detected wet snow, with 82% of those studies applying a backscattering-based approach proposed by Nagler et al. in 2000. However, we observed a recent increase in studies relying on InSAR- and PolSAR-based algorithms especially for the detection of dry and total SCE.
- (5)
- This review confirms the importance of ancillary data such as a DEM, a land cover map as well as meteorological data as additional inputs into SAR-based snow detection algorithms. Based on the DEM data, information about LIA, SAR shadow and layover can be derived; land cover information is useful to mitigate the negative effects of vegetated areas on the classification accuracy, and the actual snow melting conditions can be inferred from meteorological data.
- (6)
- Commonly employed classification methods shifted from supervised ML approach towards more sophisticated DL approaches, and the maturity of optical-based snow cover products enables a selection of suitable training samples for supervised classifications.
- (7)
- Technical advances in recently launched SAR missions such as wider sensing swaths, shorter revisit times and quad-polarization make SAR-based snow cover detection more promising. These technical developments and the mainstream SAR-based algorithms complement each other well, as the extended coverage can increase the efficiency of the classification, the shortened revisiting time can support InSAR-based approaches to sustain more usable coherence, and the quad-polarization can enrich the information decomposed by PolSAR-based techniques.
- (8)
- The difficulty of SCE detection in vegetated land cover regions is recently addressed but further exploration of PolInSAR and TomoSAR techniques should be investigated. In addition, the influence of filter algorithms on the quality of the final snow cover product requires additional research.
- (9)
- The synergy of SAR with other sensors (e.g., optical and passive microwave) to improve the quality of snow cover classifications is still immature and requires further research. The synergic use with other sensors may also help develop and establish generally accepted validation strategies.
- (10)
- Thanks to the characteristics of SAR which can penetrate through clouds and sense ground independently of solar illumination conditions, together with the recent prosperity of different SAR satellites and advancement of ML/DL algorithms, it is foreseeable that SAR-based SCE detection approaches can complement conventional optical sensor-based SCE detection approaches in the near future as SAR provides more snowpack condition information and can fundamentally solve the cloud coverage and polar darkness limitations.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Study Regions Type | Validation Dataset | Land Cover | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Involved Analysis | Only Mask | ||||||||||
Band | Mountainous | Forest | Glacier | Landsat | MODIS | AVNIR-2 | Aerial | Meteo Station | |||
X-Band | COSMO- SkyMed | [134,136,137,186,187,188,220,226] | [134,136,137,186,187,226] | [136,186,226] | |||||||
TerraSAR-X | [86,136,209,227] | [148] | [194,228,229] | ||||||||
C-Band | ERS-1/2 | [85,126,135,231,232] | [138,139,230] | [126,232] | [121] | [121,139,230] | |||||
Radatsat-1 | [103,131,133,176,233,234] | [175,189,199,200,235,236] | [104] | [175,189,199,200,235,236] | [103,133] | [175,189,199,200,235,236] | |||||
ENVISAT | [33,65,68,102,132,151,153,154,155,156,195,237,238,239,240,241,242,243,244,245] | [142,145,185,206] | [68] | [102,151,153,154,237] | [68] | [238,241,244] | [102,156,238,241,244] | ||||
Radarsat-2 | [35,118,149,152,159,163,167,168,205,208,246] | [168] | [165,177,191] | [35,118,159,163,168,191,205] | [152] | [118,149,163,165] | |||||
Sentinel-1 | [140,143,198,221,222,247,248,249,250] | [143] | [96] | [140,143] | [143] | [143] | [143] | ||||
L-Band | ALOS-1 | [30,144,169,171,211,252] | [251] | [169] | [30,169,170,211] | ||||||
ALOS-2 | [180] |
Decomposition Type | Parameter | Wet and Dry Snow Response | Total Snow Response | Employed by Studies | Used for Final Classification | ||
---|---|---|---|---|---|---|---|
Wet and Dry Snow | Snow-Covered/Free | ||||||
Backscattering | , , | [165,174] | [165] | [169] | |||
Pauli decomposition [160] | Cloude and Pottier 1996 | single/odd bounce, double/even bounce, volume scattering | Low and [169] | [30,35,163,165,167,168,169] | [163] [165] All [174] | All [174] | |
H/A/ [160] | Cloude and Pottier 1996 | H entropy A anisotropy angle 1-H H(1-A) | Low for wet snow [30] Low for wet snow [35] High H for wet snow [35] | Low H and H(1-A) [30] Low H, [251] High A [30] | [30,35,118,143,163,165,167,169,171,172,174,191,211,246,251,252] | [163,246] H/ [35] | [30,171] [191] H [168,169,211] A [168,211] [211] |
Freeman [253] | Freeman and Durden 1998 | surface, double-bounce, volume scattering | [163,169,174,211] | ||||
Yamaguchi [254] | Yamaguchi et al. 2006 | Helix scattering of coefficient, surface, double-bounce, volume scattering | [30,163,169,211,246] | [163,246] | |||
Touzi [255] | Touzi 2007 | [168] | [191] [168] | ||||
[256] | Antropov et al. 2011 | Generalized volume scattering | [159] | ||||
Kennaugh [257] | Schmitt et al. 2015 | Kennaugh elements | Low for wet snow [209] | [209] | [209] | ||
Derived parameter | |||||||
Total power (TP) | Low TP [251] | [251] | |||||
Van Zyl et al. 1987 | Polarization fraction (PF) [258] | High PF for wet snow [118] | High PF [251] | [30,118,171,251] | [30,118,171] | ||
Ainsworth et al. 2002 | Polarimetric asymmetry (PA) [259] | High PA [30] | [30] | ||||
Lüneburg 2001 | Lüneburg anisotropy (LA) [260] | Low LA [30] | [30] | ||||
Allain et al. 2006 | single-bounce eigenvalue relative difference (SERD) double-bounce eigenvalue relative difference (DERD) [261] | High SERD when snow is wet as the surface scattering dominates [35] | [30,35] | SERD [35] | |||
Lee and Pottier 2009 | Copolarization Coherence [262] | [30] | |||||
Lee and Pottier 2009 | polarimetric copolarization phase difference (PPD) [262] | [30] | |||||
Huynen parameter | [174] | ||||||
Radar Vegetation Index (RVI) | [174] | ||||||
Degree of polarization (DoP) | [180] |
References
- Pepe, M.P.L.; Brivio, P.A.; Rampini, A.; Nodari, F.R.; Boschetti, M. Snow cover monitoring in Alpine regions using ENVISAT optical data. Int. J. Remote Sens. 2005, 26, 4661–4667. [Google Scholar] [CrossRef]
- Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; et al. Observations: Changes in Snow, Ice and Frozen Ground; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kerr, Y.; Mahmoodi, A.; Mialon, A.; Al Biltar, A.; Rodríguez-Fernández, N.; Richaume, P.; Cabot, F.; Wigneron, J.; Waldteufel, P.; Ferrazzoli, P.; et al. Soil Moisture Retrieval Algorithms: The SMOS Case; Elsevier: Amsterdam, The Netherlands, 2018; pp. 156–190. [Google Scholar]
- GCOS, WMO. Systematic Observation Requirements for Satellite-Based Data Products for Climate—2011 Update; GCOS, WMO: Geneva, Switzerland, 2011. [Google Scholar]
- Metsämäki, S.; Ripper, E.; Mattila, O.-P.; Fernandes, R.; Schwaizer, G.; Luojus, K.; Nagler, T.; Bojkov, B.; Kern, M. Evaluation of Northern Hemisphere and regional snow extent products within ESA SnowPEx-project. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Dietz, A.J.; Kuenzer, C.; Dech, S. Global SnowPack: A new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent. Remote Sens. Lett. 2015, 6, 844–853. [Google Scholar] [CrossRef]
- Kim, E.; Gatebe, C.; Hall, D.; Newlin, J.; Misakonis, A.; Elder, K.; Marshall, H.P.; Heimstra, C.; Brucker, L.; De Marco, E. Overview of SnowEx Year 1 Activities. In Proceedings of the SnowEx Workshop 2017, Longmont, CO, USA, 8–10 August 2017. [Google Scholar]
- Manuel, G.; Gascoin, S.; Hagolle, O.; L’helguen, C.; Klempka, T. Let it snow—Operational snow cover product from Sentinel-2 and Landsat-8 data. In Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Trofaier, A.M. Monitoring Snow & Ice from space. In Proceedings of the Copernicus Pan European High Resolution Snow and Ice Monitoring Product-User Consultation Workshop, Etterbeek, Belgium, 7 June 2018. [Google Scholar]
- Barry, R.G. The parameterization of surface albedo for sea ice and its snow cover. Prog. Phys. Geogr. Earth Environ. 1996, 20, 63–79. [Google Scholar] [CrossRef]
- Barry, R.G.; Chorley, R.J. Atmosphere, Weather and Climate; Routledge: London, UK, 2009. [Google Scholar]
- Serreze, M.C.; Walsh, J.E.; Chapin, F.S., III; Osterkamp, T.; Dyurgerov, M.; Romanovsky, V.; Oechel, W.C.; Morison, J.; Zhang, T.; Barry, R.G. Observational Evidence of Recent Change in the Northern High-Latitude Environment. Clim. Chang. 2000, 46, 159–207. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, S.C.; Ceppi, P.; Croci-Maspoli, M.; Appenzeller, C. Snow-albedo feedback and Swiss spring temperature trends. Theor. Appl. Clim. 2012, 110, 509–516. [Google Scholar] [CrossRef]
- Kevin, J.-P.W.; Kotlarski, S.; Scherrer, S.C.; Schär, C. The Alpine snow-albedo feedback in regional climate models. Clim. Dyn. 2017, 48, 1109–1124. [Google Scholar]
- Armstrong, R.L.; Brodzik, M.J. Hemispheric-scale comparison and evaluation of passive-microwave snow algorithms. Ann. Glaciol. 2002, 34, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Dankers, R.; De Jong, S.M. Monitoring snow-cover dynamics in Northern Fennoscandia with SPOT VEGETATION images. Int. J. Remote Sens. 2004, 25, 2933–2949. [Google Scholar] [CrossRef]
- Steffen, K. Surface energy exchange at the equilibrium line on the Greenland ice sheet during onset of melt. Ann. Glaciol. 1995, 21, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, D.G.; Comiso, J.C.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J.; et al. Observations: Cryosphere. Clim. Chang. 2013, 2103, 317–382. [Google Scholar]
- Yang, Y.; Leppäranta, M.; Cheng, B.; Li, Z. Numerical modelling of snow and ice thicknesses in Lake Vanajavesi, Finland. Tellus A 2012, 64, 17202. [Google Scholar] [CrossRef]
- Ebert, E.E.; Curry, J.A. An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res. Space Phys. 1993, 98, 10085–10109. [Google Scholar] [CrossRef]
- Shine, K.P.; Henderson-Sellers, A.; Henderson-Sellers, A. The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization. J. Geophys. Res. Space Phys. 1985, 90, 2243–2250. [Google Scholar] [CrossRef]
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 2018, 12, 759–794. [Google Scholar] [CrossRef]
- Déry, S.J.; Romanovsky, V.E.; Stieglitz, M.; Osterkamp, T.E. The role of snow cover in the warming of arctic permafrost. Geophys. Res. Lett. 2003, 30, 13. [Google Scholar]
- Pogliotti, P.; Guglielmin, M.; Cremonese, E.; Di Cella, U.M.; Filippa, G.; Pellet, C.; Hauck, C. Warming permafrost and active layer variability at Cime Bianche, Western European Alps. Cryosphere 2015, 9, 647–661. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.-Y.; Chen, J.; Wu, Q.-B.; Hou, X. Snow cover influences the thermal regime of active layer in Urumqi River Source, Tianshan Mountains, China. J. Mt. Sci. 2018, 15, 2622–2636. [Google Scholar] [CrossRef]
- Magnin, F.; Westermann, S.; Pogliotti, P.; Ravanel, L.; Deline, P.; Malet, E. Snow control on active layer thickness in steep alpine rock walls (Aiguille du Midi, 3842 m asl, Mont Blanc massif). Catena 2017, 149, 648–662. [Google Scholar] [CrossRef]
- Beniston, M.; Stoffel, M.; Hill, M. Impacts of climatic change on water and natural hazards in the Alps: Can current water governance cope with future challenges? Examples from the European “ACQWA” project. Environ. Sci. Policy 2011, 14, 734–743. [Google Scholar] [CrossRef]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.; Clague, J.; Vuille, M.; Buytaert, W.; Cayan, D.; Greenwood, G.; et al. Toward mountains without permanent snow and ice. Earth’s Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Singh, G.; Venkataraman, G.; Yamaguchi, Y.; Park, S.-E. Capability Assessment of Fully Polarimetric ALOS–PALSAR Data for Discriminating Wet Snow from Other Scattering Types in Mountainous Regions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1177–1196. [Google Scholar] [CrossRef]
- Barnett, T.P.; Dümenil, L.; Schlese, U.; Roeckner, E.; Latif, M. The Effect of Eurasian Snow Cover on Regional and Global Climate Variations. J. Atmos. Sci. 1989, 46, 661–686. [Google Scholar] [CrossRef] [Green Version]
- Schober, J.; Schneider, K.; Helfricht, K.; Schattan, P.; Achleitner, S.; Schöberl, F.; Kirnbauer, R. Snow cover characteristics in a glacierized catchment in the Tyrolean Alps—Improved spatially distributed modelling by usage of Lidar data. J. Hydrol. 2014, 519, 3492–3510. [Google Scholar] [CrossRef]
- Solberg, R.; Amlien, J.; Koren, H.; Eikvil, L.; Malnes, E.; Storvold, R. Multi-sensor/multitemporal approaches for snow cover area monitoring. In Proceedings of the EARSeL LIS-SIG Workshop, Berne, Switzerland, 21–23 February 2005. [Google Scholar]
- Serreze, M.C.; Clark, M.P.; Frei, A. Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data. Water Resour. Res. 2001, 37, 675–688. [Google Scholar] [CrossRef] [Green Version]
- Dedieu, J.; De Farias, G.B.; Castaings, T.; Allain-Bailhache, S.; Pottier, É.; Durand, Y.; Bernier, M. Interpretation of a RADARSAT-2 fully polarimetric time-series for snow cover studies in an Alpine context—First results. Can. J. Remote Sens. 2012, 38, 336–351. [Google Scholar] [CrossRef]
- Weingärtner, R.; Barben, M.; Spreafico, M. Floods in mountain areas—An overview based on examples from Switzerland. J. Hydrol. 2003, 282, 10–24. [Google Scholar] [CrossRef]
- Romanov, P.; Gutman, G.; Csiszar, I. Automated Monitoring of Snow Cover over North America with Multispectral Satellite Data. J. Appl. Meteorol. 2000, 39, 1866–1880. [Google Scholar] [CrossRef]
- Kvambekk, Å.S.; Melvold, K. Long-term trends in water temperature and ice cover in the subalpine lake, Øvre Heimdalsvatn, and nearby lakes and rivers. Hydrobiologia 2010, 642, 47–60. [Google Scholar] [CrossRef]
- Favier, P.; Bertrand, D.; Eckert, N.; Naaim, M. A reliability assessment of physical vulnerability of reinforced concrete walls loaded by snow avalanches. Nat. Hazards Earth Syst. Sci. 2014, 14, 689–704. [Google Scholar] [CrossRef] [Green Version]
- Mock, C.J.; Birkeland, K.W. Snow Avalanche Climatology of the Western United States Mountain Ranges. Bull. Am. Meteorol. Soc. 2000, 81, 2367–2392. [Google Scholar] [CrossRef]
- Ancey, C.; Bain, V. Dynamics of glide avalanches and snow gliding. Rev. Geophys. 2015, 53, 745–784. [Google Scholar] [CrossRef]
- Pielke, R.A.; Doesken, N.; Bliss, O.; Green, T.; Chaffin, C.; Salas, J.D.; Woodhouse, C.A.; Lukas, J.J.; Wolter, K. Drought 2002 in Colorado: An Unprecedented Drought or a Routine Drought? Pure Appl. Geophys. 2005, 162, 1455–1479. [Google Scholar] [CrossRef] [Green Version]
- Schmucki, E.; Marty, C.; Fierz, C.; Weingartner, R.; Lehning, M. Impact of climate change in Switzerland on socioeconomic snow indices. Theor. Appl. Climatol. 2017, 127, 875–889. [Google Scholar] [CrossRef]
- Steiger, R.; Abegg, B. The Sensitivity of Austrian Ski Areas to Climate Change. Tour. Plan. Dev. 2013, 10, 480–493. [Google Scholar] [CrossRef]
- Jylhä, K.; Fronzek, S.; Tuomenvirta, H.; Carter, T.R.; Ruosteenoja, K. Changes in frost, snow and Baltic sea ice by the end of the twenty-first century based on climate model projections for Europe. Clim. Chang. 2008, 86, 441–462. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters. Clim. Chang. 2010, 99, 141–153. [Google Scholar] [CrossRef]
- Brown, R.; Derksen, C.; Wang, L. A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res. Space Phys. 2010, 115, 16. [Google Scholar] [CrossRef]
- Dye, D.G. Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrol. Process. 2002, 16, 3065–3077. [Google Scholar] [CrossRef]
- Najafi, M.R.; Zwiers, F.W.; Gillett, N.P. Attribution of the spring snow cover extent decline in the Northern Hemisphere, Eurasia and North America to anthropogenic influence. Clim. Chang. 2016, 136, 571–586. [Google Scholar] [CrossRef] [Green Version]
- Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Kuchiki, K.; Niwano, M.; Enomoto, H. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 2017, 191, 402–418. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Marty, C.; Schlögl, S.; Bavay, M.; Lehning, M. How much can we save? Impact of different emission scenarios on future snow cover in the Alps. Cryosphere 2017, 11, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Dietz, A.J.; Conrad, C.; Kuenzer, C.; Gesell, G.; Dech, S. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sens. 2014, 6, 12752–12775. [Google Scholar] [CrossRef] [Green Version]
- Bulygina, O.N.; Groisman, P.Y.; Razuvaev, V.N.; Korshunova, N.N. Changes in snow cover characteristics over Northern Eurasia since 1966. Environ. Res. Lett. 2011, 6, 045204. [Google Scholar] [CrossRef]
- Terzago, S.; Fratianni, S.; Cremonini, R. Winter precipitation in Western Italian Alps (1926–2010). Meteorol. Atmos. Phys. 2013, 119, 125–136. [Google Scholar] [CrossRef]
- Dyrrdal, A.V.; Saloranta, T.; Skaugen, T.; Stranden, H.B. Changes in snow depth in Norway during the period 1961–2010. Hydrol. Res. 2013, 44, 169–179. [Google Scholar] [CrossRef]
- Schmucki, E.; Marty, C.; Fierz, C.; Lehning, M. Simulations of 21st century snow response to climate change in Switzerland from a set of RCMs. Int. J. Climatol. 2015, 35, 3262–3273. [Google Scholar] [CrossRef]
- Magnusson, J.; Jonas, T.; López-Moreno, I.; Lehning, M. Snow cover response to climate change in a high alpine and half-glacierized basin in Switzerland. Hydrol. Res. 2010, 41, 230–240. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- König, M.; Winther, J.-G.; Isaksson, E. Measuring snow and glacier ice properties from satellite. Rev. Geophys. 2001, 39, 1–27. [Google Scholar] [CrossRef]
- Bruder, J.A. IEEE Radar standards and the radar systems panel. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 19–22. [Google Scholar] [CrossRef]
- Wiley, C.A. Synthetic aperture radars. IEEE Trans. Aerosp. Electron. Syst. 1985, 3, 440–443. [Google Scholar] [CrossRef]
- Chan, Y.K.; Koo, V.C. An introduction to synthetic aperture radar (SAR). Prog. Electromagn. Res. B 2008, 2, 27–60. [Google Scholar] [CrossRef]
- Bartsch, A.; Jansa, J.; Schöner, M.; Wagner, W. Monitoring of spring snowmelt with Envisat ASAR WS in the Eastern Alps by combination of ascending and descending orbits. In Proceedings of the Envisat Symposium, Montreux, Switzerland, 23–27 April 2007. [Google Scholar]
- Campbell, B.A. Radar Remote Sensing of Planetary Surfaces; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Floricioiu, D.; Rott, H. Seasonal and short-term variability of multifrequency, polarimetric radar backscatter of Alpine terrain from SIR-C/X-SAR and AIRSAR data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2634–2648. [Google Scholar] [CrossRef]
- Solberg, R.; Koren, H.; Amlien, J.; Malnes, E.; Schuler, D.V.; Orthe, N.K. The development of new algorithms for remote sensing of snow conditions based on data from the catchment of Øvre Heimdalsvatn and the vicinity. Hydrobiologia 2010, 642, 35–46. [Google Scholar] [CrossRef]
- Macander, M.J.; Swingley, C.S.; Joly, K.; Raynolds, M.K. Landsat-based snow persistence map for northwest Alaska. Remote Sens. Environ. 2015, 163, 23–31. [Google Scholar] [CrossRef]
- Harrison, A.R.; Lucas, R.M. Multi-spectral classification of snow using NOAA AVHRR imagery. Int. J. Remote Sens. 1989, 10, 907–916. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Engelhardt, H.; Kamb, B.; Frolich, R.M. Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream. Science 1993, 262, 1525–1530. [Google Scholar] [CrossRef]
- Zebker, H.A.; Goldstein, R.M. Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. Res. Space Phys. 1986, 91, 4993–4999. [Google Scholar] [CrossRef]
- Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P. Coherence estimation for SAR imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-R.; Lin, S.-Y.; Yun, H.-W.; Tsai, Y.-L.; Seo, H.-J.; Hong, S.; Choi, Y. Investigation of Potential Volcanic Risk from Mt. Baekdu by DInSAR Time Series Analysis and Atmospheric Correction. Remote Sens. 2017, 9, 138. [Google Scholar] [CrossRef]
- Tsai, Y.; Lin, S.; Kim, J. Tracking Greenland Russell Glacier Movements Using Pixel-offset Method. J. Photogramm. Remote Sens. 2018, 23, 173–189. [Google Scholar]
- Tsai, Y.-L.; Kim, J.-R.; Save, H.; Lin, S.-Y. Monitoring Groundwater Depletion of Northwest India using SAR Interferometry. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2016. [Google Scholar]
- Taini, G.; Pietropaolo, A.; Notarantonio, A. Criteria and trade-offs for LEO orbit design. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008. [Google Scholar]
- Luo, X.; Wang, M.; Dai, G.; Chen, X. A Novel Technique to Compute the Revisit Time of Satellites and Its Application in Remote Sensing Satellite Optimization Design. Int. J. Aerosp. Eng. 2017, 2017, 6469439. [Google Scholar] [CrossRef]
- Dial, G.; Bowen, H.; Gerlach, F.; Grodecki, J.; Oleszczuk, R. IKONOS satellite, imagery, and products. Remote Sens. Environ. 2003, 88, 23–36. [Google Scholar] [CrossRef]
- Key, J.; Drinkwater, M.; Ukita, J. IGOS cryosphere theme report. WMO/TD 2007, 1405, 100. [Google Scholar]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Photo Interpretation; John Wiley and Sons: New York, NY, USA, 1994; p. 750. [Google Scholar]
- Chan, A.K.; Peng, C. Wavelets for Sensing Technologies; Artech House: Norwood, MA, USA, 2003. [Google Scholar]
- Ulaby, F.T.; Stiles, W.H. The active and passive microwave response to snow parameters: Water equivalent of dry snow. J. Geophys. Res. Space Phys. 1980, 85, 1045–1049. [Google Scholar] [CrossRef]
- Salcedo, A.P.; Cogliati, M.G. Snow Cover Area Estimation Using Radar and Optical Satellite Information. Atmos. Clim. Sci. 2014, 4, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Besic, N.; Vasile, G.; Dedieu, J.-P.; Chanussot, J.; Stanković, S. Stochastic Approach in Wet Snow Detection Using Multitemporal SAR Data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 244–248. [Google Scholar] [CrossRef]
- Mätzler, C. Applications of the interaction of microwaves with the natural snow cover. Remote Sens. Rev. 1987, 2, 259–387. [Google Scholar] [CrossRef]
- Rees, W.G. Remote Sensing of Snow and Ice; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Rignot, E.; Echelmeyer, K.; Krabill, W. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett. 2001, 28, 3501–3504. [Google Scholar] [CrossRef] [Green Version]
- Langley, K.; Hamran, S.-E.; Hogda, K.A.; Storvold, R.; Brandt, O.; Hagen, J.O.; Kohler, J. Use of C-Band Ground Penetrating Radar to Determine Backscatter Sources Within Glaciers. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1236–1246. [Google Scholar] [CrossRef]
- Rott, H.; Mätzler, C. Possibilities and Limits of Synthetic Aperture Radar for Snow and Glacier Surveying. Ann. Glaciol. 1987, 9, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Dozier, J. Inferring snow wetness using C-band data from SIR-C’s polarimetric synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 1995, 33, 905–914. [Google Scholar]
- Mätzler, C.; Schanda, E. Snow mapping with active microwave sensors. Int. J. Remote Sens. 1984, 5, 409–422. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive: 3: From Theory to Applications; Artech House: Norwood, MA, USA, 1986. [Google Scholar]
- Ashcraft, I.S.; Long, D.G. Comparison of methods for melt detection over Greenland using active and passive microwave measurements. Int. J. Remote Sens. 2006, 27, 2469–2488. [Google Scholar] [CrossRef]
- Zhou, C.; Zheng, L. Mapping Radar Glacier Zones and Dry Snow Line in the Antarctic Peninsula Using Sentinel-1 Images. Remote Sens. 2017, 9, 1171. [Google Scholar] [CrossRef]
- Evans, S. Dielectric Properties of Ice and Snow—A Review. J. Glaciol. 1965, 5, 773–792. [Google Scholar] [CrossRef]
- Arslan, A.; Wang, H.; Pulliainen, J.; Hallikainen, M. Effective Permittivity of Wet Snow Using Strong Fluctuation Theory—Abstract. J. Electromagn. Waves Appl. 2001, 15, 53–55. [Google Scholar] [CrossRef]
- Ambach, W.; Denoth, A. The Dielectric Behaviour of Snow: A Study Versus Liquid Water Content; NASA: Washington, DC, USA, 1980. [Google Scholar]
- Guneriussen, T. Backscattering properties of a wet snow cover derived from DEM corrected ERS-1 SAR data. Int. J. Remote Sens. 1997, 18, 375–392. [Google Scholar] [CrossRef]
- Strozzi, T.; Matzler, C. Backscattering measurements of alpine snowcovers at 5.3 and 35 GHz. IEEE Trans. Geosci. Remote Sens. 1998, 36, 838–848. [Google Scholar] [CrossRef]
- Thakur, P.K.; Garg, P.K.; Aggarwal, S.P.; Garg, R.D.; Mani, S. Snow Cover Area Mapping Using Synthetic Aperture Radar in Manali Watershed of Beas River in the Northwest Himalayas. J. Indian Soc. Remote Sens. 2013, 41, 933–945. [Google Scholar] [CrossRef]
- Guneriussen, T.; Johnsen, H.; Lauknes, I. Snow Cover Mapping Capabilities Using RADARSAT Standard Mode Data. Can. J. Remote Sens. 2001, 27, 109–117. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Jezek, K. Automated delineation of dry and melt snow zones in Antarctica using active and passive microwave observations from space. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2152–2163. [Google Scholar]
- Chuvieco, E. Environmental Remote Sensing: Earth Observation from Space; Ariel: Barcelona, Spain, 2008. [Google Scholar]
- Snehmani Singh, M.K.; Gupta, R.D.; Bhardwaj, A.; Joshi, P.K. Remote sensing of mountain snow using active microwave sensors: A review. Geocarto Int. 2015, 30, 1–27. [Google Scholar] [CrossRef]
- Moghaddam, M.; Saatchi, S. Analysis of scattering mechanisms in SAR imagery over boreal forest: Results from BOREAS. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1290–1296. [Google Scholar] [CrossRef]
- Eriksson, L.E.; Borenäs, K.; Dierking, W.; Berg, A.; Santoro, M.; Pemberton, P.; Lindh, H.; Karlson, B. Evaluation of new spaceborne SAR sensors for sea-ice monitoring in the Baltic Sea. Can. J. Remote Sens. 2010, 36, S56–S73. [Google Scholar] [CrossRef] [Green Version]
- Phan, X.-V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Allain, S.; D’Urso, G. Analysis of snowpack properties and structure from TerraSAR-X data, based on multilayer backscattering and snow evolution modeling approaches. arXiv 2012, arXiv:1211.3278. [Google Scholar]
- Martini, A.; Ferro-Famil, L.; Pottier, E. Polarimetric study of scattering from dry snow cover in alpine areas. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toulouse, France, 21–25 July 2003. [Google Scholar]
- Besic, N.; Vasile, G.; Chanussot, J.; Stankovic, S.; Dedieu, J.-P.; d’Urso, G.; Boldo, D.; Ovarlez, J.-P. Dry snow backscattering sensitivity on density change for swe estimation. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012. [Google Scholar]
- Johansson, A.M.; Brekke, C.; Spreen, G.; King, J.A. X-, C-, and L-band SAR signatures of newly formed sea ice in Arctic leads during winter and spring. Remote Sens. Environ. 2018, 204, 162–180. [Google Scholar] [CrossRef]
- Schwaizer, G. SAR/Optical Applications to Ice and Snow. In Proceedings of the ESA Training Course on Radar and Optical Remote Sensing, Vilnius, Lithuania, 3–7 July 2017. [Google Scholar]
- Shi, J.; Dozier, J. Measurements of snow- and glacier-covered areas with single-polarization SAR. Ann. Glaciol. 1993, 17, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Bernier, M.; Fortin, J.-P. The potential of times series of C-Band SAR data to monitor dry and shallow snow cover. IEEE Trans. Geosci. Remote Sens. 1998, 36, 226–243. [Google Scholar] [CrossRef]
- Garrity, C.; Carsey, F.D. Characterization of snow on floating ice and case studies of brightness temperature changes during the onset of melt. Sea Ice 1992, 68, 313–328. [Google Scholar]
- Suzuki, M.; Sasaki, M.; Murata, K.; Fujino, K.; Takeda, K. Evaluation of the data obtained by satellite-borne microwave sensor for snowpack observation. In Proceedings of the International Geoscience and Remote Sensing Symposium, Quantitative Remote Sensing for Science and Applications (IGARSS’95), Firenze, Italy, 10–14 July 1995. [Google Scholar]
- Muhuri, A.; Manickam, S.; Bhattacharya, A. Snehmani Snow Cover Mapping Using Polarization Fraction Variation with Temporal RADARSAT-2 C-Band Full-Polarimetric SAR Data Over the Indian Himalayas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2192–2209. [Google Scholar] [CrossRef]
- Rott, H. The analysis of backscattering properties from SAR data of mountain regions. IEEE J. Ocean. Eng. 1984, 9, 347–355. [Google Scholar] [CrossRef]
- Rott, H. Synthetic aperture radar capabilities for snow and glacier monitoring. Adv. Space Res. 1984, 4, 241–246. [Google Scholar] [CrossRef]
- Löw, A.; Ludwig, R.; Mauser, W. Land use dependent snow cover retrieval using multitemporal, multisensoral SAR-images to drive operational flood forecasting models. In Proceedings of the EARSeL-LISSIG-Workshop Observing Our Cryosphere from Space, Bern, Switzerland, 11–13 March 2002. [Google Scholar]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Attema, E.; Desnos, Y.-L.; Duchossois, G. Synthetic aperture radar in Europe: ERS, Envisat, and beyond. Johns Hopkins APL Tech. Dig. 2000, 21, 155–161. [Google Scholar]
- Strozzi, T. Backscattering Measurements of Snowcovers at 5.3 and 35 ghz; Fakultat der Philosophisch-naturwissenschaftlichen, Universitat Bern: Bern, Switzerland, 1996. [Google Scholar]
- Venkataraman, G.; Singh, G.; Kumar, V. Snow cover area monitoring using multi-temporal TerraSAR-X data. In Proceedings of the Third TerraSAR-X Science Team Meeting, DLR, Germany, 14–16 February 2008. [Google Scholar]
- Nagler, T.; Rott, H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 754–765. [Google Scholar] [CrossRef]
- Rott, H.; Nagler, T. Monitoring temporal dynamics of snowmelt with ERS-1 SAR. In Proceedings of the International Geoscience and Remote Sensing Symposium, Quantitative Remote Sensing for Science and Applications (IGARSS’95), Firenze, Italy, 10–14 July 1995. [Google Scholar]
- Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 1: Algorithm Description. Remote Sens. 2013, 5, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; Barton, J.; Casey, K.; Chien, J.; DiGirolamo, N.E.; Klein, A.G.; Powell, H.W.; Tait, A.B. Algorithm theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping algorithms. Available online: https://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd_mod10.pdf (accessed on 17 July 2019).
- Malnes, E.; Guneriussen, T. Mapping of snow covered area with Radarsat in Norway. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS’2002), Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Longepe, N.; Allain, S.; Ferro-Famil, L.; Pottier, E.; Durand, Y. Snowpack Characterization in Mountainous Regions Using C-Band SAR Data and a Meteorological Model. IEEE Trans. Geosci. Remote Sens. 2009, 47, 406–418. [Google Scholar] [CrossRef]
- Pettinato, S.; Malnes, E.; Haarpaintner, J. Snow cover maps with satellite borne SAR: A new approach in harmony with fractional optical SCA retrieval algorithms. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, USA, 31 July–4 August 2006. [Google Scholar]
- Schellenberger, T.; Ventura, B.; Zebisch, M.; Notarnicola, C. Wet Snow Cover Mapping Algorithm Based on Multitemporal COSMO-SkyMed X-Band SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1045–1053. [Google Scholar] [CrossRef]
- Baghdadi, N. Capability of Multitemporal ERS-1 SAR Data for Wet-Snow Mapping. Remote Sens. Environ. 1997, 60, 174–186. [Google Scholar] [CrossRef]
- Pettinato, S.; Santi, E.; Paloscia, S.; Aiazzi, B.; Baronti, S.; Garzelli, A. Snow cover area identification by using a change detection method applied to COSMO-SkyMed images. J. Appl. Remote Sens. 2014, 8, 84684. [Google Scholar] [CrossRef]
- Ventura, B.; Schellenberger, T.; Notarnicola, C.; Zebisch, M.; Nagler, T.; Rott, H.; Maddalena, V.; Ratti, R.; Tampellini, L. Snow cover monitoring in alpine regions with cosmo-skymed images by using a multitemporal approach and depolarization ratio. In Proceedings of the 2011 6th International Workshop on the Analysis of Multi-Temporal Remote Sensing Images (Multi-Temp), Trento, Italy, 12–14 July 2011. [Google Scholar]
- Koskinen, J.; Pulliainen, J.; Hallikainen, M. The use of ERS-1 SAR data in snow melt monitoring. IEEE Trans. Geosci. Remote Sens. 1997, 35, 601–610. [Google Scholar] [CrossRef]
- Luojus, K.; Pulliainen, J.; Metsamaki, S.; Hallikainen, M. Accuracy assessment of SAR data-based snow-covered area estimation method. IEEE Trans. Geosci. Remote Sens. 2006, 44, 277–287. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H.; Ripper, E.; Bippus, G.; Hetzenecker, M. Advancements for Snowmelt Monitoring by Means of Sentinel-1 SAR. Remote Sens. 2016, 8, 348. [Google Scholar] [CrossRef]
- Magagi, R.; Bernier, M. Optimal conditions for wet snow detection using RADARSAT SAR data. Remote Sens. Environ. 2003, 84, 221–233. [Google Scholar] [CrossRef]
- Rao, Y.; Venkataraman, G.; Singh, G. ENVISAT-ASAR data analysis for snow cover mapping over Gangotri region. In Proceedings of the Microwave Remote Sensing of the Atmosphere and Environment V, Goa, India, 13–17 November 2006. [Google Scholar]
- Tsai YL, S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Wet and Dry Snow Detection Using Sentinel-1 SAR Data for Mountainous Areas with a Machine Learning Technique. Remote Sens. 2019, 11, 895. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Li, H.; Yang, Y.; Yang, T. Assessment of Snow Status Changes Using L-HH Temporal-Coherence Components at Mt. Dagu, China. Remote Sens. 2015, 7, 11602–11620. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Venkataraman, G.; Rao, Y.S.; Kumar, V. InSAR coherence measurement techniques for snow cover mapping in Himalayan region. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 8–11 July 2008. [Google Scholar]
- Shi, J.; Hensley, S.; Dozier, J. Mapping snow cover with repeat pass synthetic aperture radar. In Proceedings of the 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997. [Google Scholar]
- Strozzi, T.; Wegmuller, U.; Mätzler, C. Mapping wet snowcovers with SAR interferometry. Int. J. Remote Sens. 1999, 20, 2395–2403. [Google Scholar] [CrossRef]
- Guo, C.; Tong, L.; Chen, Y.; Yang, X. Snow extraction using X-band multi-temporal coherence based on insar technology. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Guangjun, H.; Pengfeng, X.; Xuezhi, F.; Xueliang, Z.; Zuo, W.; Ni, C. Extracting Snow Cover in Mountain Areas Based on SAR and Optical Data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1136–1140. [Google Scholar] [CrossRef]
- Zebker, H.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Malnes, E.; Storvold, R.; Lauknes, I. Near real time snow covered area mapping with Envisat ASAR wideswath in Norwegian mountainous areas. In Proceedings of the ESA ENVISAT & ERS Symposium, Salzburg, Austria, 6–10 September 2004. [Google Scholar]
- Thakur, P.K.; Aggarwal, S.P.; Arun, G.; Sood, S.; Kumar, A.S.; Mani, S.; Dobhal, D.P. Estimation of Snow Cover Area, Snow Physical Properties and Glacier Classification in Parts of Western Himalayas Using C-Band SAR Data. J. Indian Soc. Remote Sens. 2016, 45, 525–539. [Google Scholar] [CrossRef]
- Ji, X.; Chen, Y.; Tong, L.; Jia, M.; Tan, L.; Fan, S. Area retrieval of melting snow in alpine areas. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Storvold, R.; Malnes, E. Snow covered area retrieval using ENVISAT ASAR wideswath in mountainous areas. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Pettinato, S.; Poggi, P.; Macelloni, G.; Paloscia, S.; Pampaloni, P.; Crepaz, A. Mapping snow cover in alpine areas with ENVISAT/SAR images. In Proceedings of the ESA ENVISAT & ERS Symposium, Salzburg, Austria, 6–10 September 2004. [Google Scholar]
- Brogioni, M.; Macelloni, G.; Paloscia, S.; Pampaloni, P.; Pettinato, S.; Santi, E. Monitoring snow cover characteristics with multifrequency active and passive microwave sensors. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Rott, H. Thematic studies in alpine areas by means of polarimetric SAR and optical imagery. Adv. Space Res. 1994, 14, 217–226. [Google Scholar] [CrossRef]
- Shi, J.; Dozier, J. Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sens. Environ. 1997, 59, 294–307. [Google Scholar] [CrossRef]
- Muhuri, A.; Ratha, D.; Bhattacharya, A. Seasonal Snow Cover Change Detection Over the Indian Himalayas Using Polarimetric SAR Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2340–2344. [Google Scholar] [CrossRef]
- Cloude, S.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Touzi, R.; Boerner, W.M.; Lee, J.S.; Lueneburg, E. A review of polarimetry in the context of synthetic aperture radar: Concepts and information extraction. Can. J. Remote Sens. 2004, 30, 380–407. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, B.; Cai, H.; Zhang, Y. Multiple-Component Scattering Model for Polarimetric SAR Image Decomposition. IEEE Geosci. Remote Sens. Lett. 2008, 5, 603–607. [Google Scholar] [CrossRef]
- He, G.; Feng, X.; Xia, Z.; Guo, J.; Xiao, P.; Wang, Z.; Chen, H.; Li, H. Dry and Wet Snow Cover Mapping in Mountain Areas Using SAR and Optical Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2575–2588. [Google Scholar] [CrossRef]
- Bruzzone, L.; Roli, F.; Serpico, S. An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1318–1321. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Li, Z.; Tian, B.-S.; Chen, Q.; Liu, J.-L.; Zhang, R. Classification and snow line detection for glacial areas using the polarimetric SAR image. Remote Sens. Environ. 2011, 115, 1721–1732. [Google Scholar] [CrossRef]
- Baghdadi, N.; Livingstone, C.; Bernier, M. Airborne C-band SAR measurements of wet snow-covered areas. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1977–1981. [Google Scholar] [CrossRef]
- Reppucci, A.; Banque, X.; Zhan, Y.; Alonso, A.; Lopez-Martinez, C. Estimation of snow pack characteristics by means of polarimetric SAR data. SPIE Remote Sens. 2012, 8531, 85310. [Google Scholar]
- Muhuri, A.; Manickam, S.; Bhattacharya, A. Scattering Mechanism Based Snow Cover Mapping Using RADARSAT-2 C-Band Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3213–3224. [Google Scholar] [CrossRef]
- Park, S.-E.; Yamaguchi, Y.; Singh, G.; Yamaguchi, S.; Whitaker, A.C. Polarimetric SAR Response of Snow-Covered Area Observed by Multi-Temporal ALOS PALSAR Fully Polarimetric Mode. IEEE Trans. Geosci. Remote Sens. 2014, 52, 329–340. [Google Scholar] [CrossRef]
- Venkataraman, G.; Singh, G.; Yamaguchi, Y. Fully polarimetric ALOS PALSAR data applications for snow and ice studies. In Proceedings of the IGARSS 2010—2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 1776–1779. [Google Scholar]
- Venkataraman, G.; Singh, G.; Yamaguchi, Y.; Park, S.-E. Methodology development for snow discrimination using SAR polarimetry techniques. In Proceedings of the 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea, 26–30 September 2011. [Google Scholar]
- Martini, A.; Ferro-Famil, L.; Pottier, E.; Dedieu, J.-P. Dry snow discrimination in alpine areas from multi-frequency and multi-temporal SAR data. IEE Proc. Radar Sonar Navig. 2006, 153, 271–278. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef]
- Longepe, N.; Shimada, M.; Allain, S.; Pottier, E. Capabilities of full-polarimetric PALSAR/ALOS for snow extent mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 8–11 July 2008. [Google Scholar]
- Luojus, K.P.; Pulliainen, J.T.; Metsamaki, S.J.; Hallikainen, M.T. Snow-Covered Area Estimation Using Satellite Radar Wide-Swath Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 978–989. [Google Scholar] [CrossRef]
- Haefner, H. Small-Scale Monitoring of Wet Snowcover with Radarsat-ScanSAR Data. EARSeL eProceedings 2001, 1, 339–346. [Google Scholar]
- Li, Z.; Huang, L.; Chen, Q.; Tian, B.S. Glacier Snow Line Detection on a Polarimetric SAR Image. IEEE Geosci. Remote Sens. Lett. 2012, 9, 584–588. [Google Scholar]
- Small, D. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Baghdadi, N.; Gauthier, Y.; Bernier, M.; Fortin, J.-P. Potential and limitations of RADARSAT SAR data for wet snow monitoring. IEEE Trans. Geosci. Remote Sens. 2000, 38, 316–320. [Google Scholar] [CrossRef]
- Usami, N.; Muhuri, A.; Bhattacharya, A.; Hirose, A. PolSAR Wet Snow Mapping with Incidence Angle Information. IEEE Geosci. Remote Sens. Lett. 2016, 13, 2029–2033. [Google Scholar] [CrossRef]
- Holah, N.; Baghdadi, N.; Zribi, M.; Bruand, A.; King, C. Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields. Remote Sens. Environ. 2005, 96, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Karam, M.A.; Amar, F.; Fung, A.K.; Mougin, E.; Lopès, A.; Le Vine, D.M.; Beaudoin, A. A microwave polarimetric scattering model for forest canopies based on vector radiative transfer theory. Remote Sens. Environ. 1995, 53, 16–30. [Google Scholar] [CrossRef]
- Pulliainen, J.T. Investigation on the Backscattering Properties of Finnish Boreal Forests at C-and X-Band: A Semi-Empirical Modeling Approach. Ph.D. Thesis, Laboratory of Space Technology, Helsinki University of Technology, Espoo, Finland, 1994. [Google Scholar]
- Duguay, Y.; Bernier, M. The use of RADARSAT-2 and TerraSAR-X data for the evaluation of snow characteristics in subarctic regions. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012. [Google Scholar]
- Kumar, V.; Venkataraman, G. SAR interferometric coherence analysis for snow cover mapping in the western Himalayan region. Int. J. Digit. Earth 2011, 4, 78–90. [Google Scholar] [CrossRef]
- Notarnicola, C.; Ratti, R.; Maddalena, V.; Schellenberger, T.; Ventura, B.; Zebisch, M. Seasonal Snow Cover Mapping in Alpine Areas Through Time Series of COSMO-SkyMed Images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 716–720. [Google Scholar] [CrossRef]
- Notarnicola, C.; Schellenberger, T.; Ventura, B.; Zebisch, M.; Maddalena, V.; Ratti, R.; Tampellini, L. Time series analysis of dual-pol COSMO-SkyMed images for monitoring snow cover in alpine areas. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012. [Google Scholar]
- Paloscia, S.; Pettinato, S.; Santi, E.; Valt, M. COSMO-SkyMed Image Investigation of Snow Features in Alpine Environment. Sensors 2017, 17, 84. [Google Scholar] [CrossRef] [PubMed]
- Luojus, K.; Pulliainen, J.; Metsamaki, S.; Hallikainen, M. Enhanced SAR-Based Snow-Covered Area Estimation Method for Boreal Forest Zone. IEEE Trans. Geosci. Remote Sens. 2009, 47, 922–935. [Google Scholar] [CrossRef]
- Rott, H.; Cline, D.; Nagler, T.; Pulliainen, J.; Rebhan, H.; Yueh, S. CoReH2O-A dual frequency SAR mission for hydrology and climate research. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Callegari, M.; Carturan, L.; Marin, C.; Notarnicola, C.; Rastner, P.; Seppi, R.; Zucca, F. A Pol-SAR Analysis for Alpine Glacier Classification and Snowline Altitude Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3106–3121. [Google Scholar] [CrossRef]
- Rott, H.; Davis, R.E. Multi-parameter airborne SAR experiments at an alpine test site. In Proceedings of the International Geoscience and Remote Sensing Symposium Remote Sensing: Global Monitoring for Earth Management, Espoo, Finland, 3–6 June 1991. [Google Scholar]
- Martone, M.; Bräutigam, B.; Krieger, G. Decorrelation effects in bistatic TanDEM-X data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012. [Google Scholar]
- Rizzoli, P.; Martone, M.; Rott, H.; Moreira, A. Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data. Remote Sens. 2017, 9, 315. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H. Snow classification algorithm for Envisat ASAR. In Proceedings of the ESA ENVISAT & ERS Symposium, Salzburg, Austria, 6–10 September 2004. [Google Scholar]
- Dedieu, J.-P.; Besic, N.; Vasile, G.; Mathieu, J.; Durand, Y.; Gottardi, F. Dry snow analysis in alpine regions using RADARSAT-2 full polarimetry data. Comparison with in situ measurements. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Baghdadi, N.; Fortin, J.-P.; Bernier, M. Accuracy of wet snow mapping using simulated Radarsat backscattering coefficients from observed snow cover characteristics. Int. J. Remote Sens. 1999, 20, 2049–2068. [Google Scholar] [CrossRef]
- Nijhawan, R.; Das, J.; Raman, B. A hybrid of deep learning and hand-crafted features based approach for snow cover mapping. Int. J. Remote Sens. 2018, 40, 759–773. [Google Scholar] [CrossRef]
- Luojus, K.; Pulliainen, J.; Cutrona, A.B.; Metsamaki, S.; Hallikainen, M. Comparison of SAR-Based Snow-Covered Area Estimation Methods for the Boreal Forest Zone. IEEE Geosci. Remote Sens. Lett. 2009, 6, 403–407. [Google Scholar] [CrossRef]
- Luojus, K.; Kärnä, J.-P.; Hallikainen, M.; Pulliainen, J. Development of techniques to retrieve Snow Covered Area (SCA) in boreal forests from space-borne microwave observations. In Proceedings of the IGARSS IEEE International Conference on the Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006. [Google Scholar]
- Kaasalainen, S.; Holopainen, M.; Karjalainen, M.; Vastaranta, M.; Kankare, V.; Karila, K.; Osmanoğlu, B. Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects. Forests 2015, 6, 252–270. [Google Scholar] [CrossRef]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A review of radar remote sensing for biomass estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef] [Green Version]
- Minh, D.H.T.; Le Toan, T.; Rocca, F.; Tebaldini, S.; D’Alessandro, M.M.; Villard, L. Relating P-Band Synthetic Aperture Radar Tomography to Tropical Forest Biomass. IEEE Trans. Geosci. Remote Sens. 2014, 52, 967–979. [Google Scholar] [CrossRef]
- Heliere, F.; Fois, F.; Arcioni, M.; Bensi, P.; Fehringer, M.; Scipal, K. Biomass P-band SAR interferometric mission selected as 7th Earth Explorer Mission. In Proceedings of the 10th European Conference on Synthetic Aperture Radar (EUSAR 2014), Berlin, Germany, 3–5 June 2014. [Google Scholar]
- Lessard-Fontaine, A.; Allain, S.; Dedieu, J.-P.; Durand, Y. Multi-temporal wet snow mapping in alpine context using polarimetric Radarsat-2 time-series. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012. [Google Scholar]
- Huang, L.; Li, Z.; Tian, B.-S.; Chen, Q.; Zhou, J.-M. Monitoring glacier zones and snow/firn line changes in the Qinghai–Tibetan Plateau using C-band SAR imagery. Remote Sens. Environ. 2013, 137, 17–30. [Google Scholar] [CrossRef]
- Nagler, T. Methods and Analysis of Synthetic Aperture Radar Data from ERS-1 and X-SAR for Snow and Glacier Applications; Leopold-Franzens-Universität Innsbruck: Innsbruck, Austria, 1996. [Google Scholar]
- He, G.; Jiang, J.; Xia, Z.; Hao, Y.; Xiao, P.; Feng, X.; Wang, Z. Snow cover extraction in mountain areas using RadarSat-2 polarimetrie SAR data. In Proceedings of the 2016 16th International Conference on Ground Penetrating Radar (GPR), Hong Kong, China, 13–16 June 2016. [Google Scholar]
- Wendleder, A.; Heilig, A.; Schmitt, A.; Mayer, C. Monitoring of Wet Snow and Accumulations at High Alpine Glaciers Using Radar Technologies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 1063. [Google Scholar] [CrossRef]
- Tso, B.; Mather, P.M. Crop discrimination using multi-temporal SAR imagery. Int. J. Remote Sens. 1999, 20, 2443–2460. [Google Scholar] [CrossRef]
- Singh, G.; Venkataraman, G. Application of incoherent target decomposition theorems to classify snow cover over the Himalayan region. Int. J. Remote Sens. 2012, 33, 4161–4177. [Google Scholar] [CrossRef]
- Crawford, C.J.; Manson, S.M.; Bauer, M.E.; Hall, D.K. Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development. Remote Sens. Environ. 2013, 135, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Crawford, C.J. MODIS Terra Collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM+. Hydrol. Process. 2015, 29, 128–138. [Google Scholar] [CrossRef]
- Winther, J.-G.; Hall, D.K. Satellite-derived snow coverage related to hydropower production in Norway: Present and future. Int. J. Remote Sens. 1999, 20, 2991–3008. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Boles, S.; Rawlins, M.; Moore, B. Mapping snow cover in the pan-Arctic zone, using multi-year (1998–2001) images from optical VEGETATION sensor. Int. J. Remote Sens. 2004, 25, 5731–5744. [Google Scholar] [CrossRef]
- Klein, A.G.; Hall, D.K.; Riggs, G.A. Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol. Process. 1998, 12, 1723–1744. [Google Scholar] [CrossRef]
- Lehning, M.; Bartelt, P.; Brown, B.; Fierz, C.; Satyawali, P. A physical SNOWPACK model for the Swiss avalanche warning: Part II. Snow microstructure. Cold Reg. Sci. Tech. 2002, 35, 147–167. [Google Scholar] [CrossRef]
- Krol, Q.; Löwe, H. Analysis of local ice crystal growth in snow. J. Glaciol. 2016, 62, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Mätzler, C.; Strozzi, T.; Wiesmann, A. Active microwave signatures of snow covers at 5.3 and 35 GHz. Radio Sci. 1997, 32, 479–495. [Google Scholar]
- Pettinato, S.; Santi, E.; Paloscia, S. Investigation of alpine snow features using cosmo-skymed images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Nagler, T.; Rott, H.; Ossowska, J.; Schwaizer, G.; Small, D.; Malnes, E.; Luojus, K.; Metsämäki, S.; Pinnock, S. Snow Cover Monitoring by Synergistic Use of Sentinel-3 Slstr and Sentinel-L Sar Data. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Snapir, B.; Momblanch, A.; Jain, S.; Waine, T.; Holman, I. A method for monthly mapping of wet and dry snow using Sentinel-1 and MODIS: Application to a Himalayan river basin. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 222–230. [Google Scholar] [CrossRef]
- Dozier, J.; Shi, J. Estimation of snow water equivalence using SIR-C/X-SAR. II. Inferring snow depth and particle size. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2475–2488. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, V.; Mohite, K.; Venkatraman, G.; Rao, Y. Snow wetness estimation in Himalayan snow covered regions using ENVISAT-ASAR data. In Proceedings of the Microwave Remote Sensing of the Atmosphere and Environment V, Goa, India, 13–17 November 2006. [Google Scholar]
- Niang, M.; Dedieu, J.-P.; Durand, Y.; Mérindol, L.; Bernier, M.; Dumont, M. New inversion method for snow density and snow liquid water content retrieval using C-band data from ENVISAT/ASAR alternating polarization in alpine environment. In Proceedings of the Envisat Symposium, Montreux, Switzerland, 23–27 April 2007. [Google Scholar]
- Ventura, B.; Schellenberger, T.; Notarnicola, C.; Zebisch, M.; Maddalena, V.; Ratti, R.; Tampellini, L.; Du, J. Analysis of snow changes in alpine regions with X-band data: Electromagnetic analysis and snow cover mapping. SPIE Remote Sens. 2011, 8179, 817908. [Google Scholar]
- Besic, N.; Vasile, G.; Chanussot, J.; Stankovic, S.; Ovarlez, J.-P.; d’Urso, G.; Boldo, D.; Dedieu, J.-P. Stochastically based wet snow mapping with SAR data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012. [Google Scholar]
- Rizzoli, P.; Martone, M.; Brautigam, B. Greenland ice sheet snow facies identification approach using TanDEM-X interferometric data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Rizzoli, P.; Martone, M.; Brautigam, B.; Rott, H.; Moreira, A. Multi-Temporal Investigation of Greenland Ice Sheet Snow Facies using TanDEM-X Mission Data. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Koskinen, J.; Pulliainen, J.; Luojus, K.; Takala, M. Monitoring of Snow-Cover Properties During the Spring Melting Period in Forested Areas. IEEE Trans. Geosci. Remote Sens. 2010, 48, 50–58. [Google Scholar] [CrossRef]
- Tampellini, M.L. Monitoring of Glacier and Snow Cover Changes in Alpine Region using Remote Sensing Data. In Proceedings of the 54th International Astronautical Congress of the International Astronautical Federation, Bremen, Germany, 29 September–3 October 2003. [Google Scholar]
- Li, Z.; Guo, H.; Li, X.; Wang, C. SAR Interferometry coherence analysis for snow mapping. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, Australia, 9–13 July 2001. [Google Scholar]
- Haefner, H.; Small, D.; Biegger, S.; Hoffmann, H.; Nuesch, D. Estimation of snow cover over large mountainous areas using Radarsat ScanSAR. In Proceedings of the Remote Sensing and Hydrology, Santa Fe, NM, USA, April 2000. [Google Scholar]
- Anttila, S.; Metsämäki, S.; Pulliainen, J.; Luojus, K. From EO data to snow covered area (SCA) end products using automated processing system. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Seoul, Korea, 25–29 July 2005. [Google Scholar]
- Luojus, K.; Pulliainen, J.; Metsämäki, S. Evaluation of the single reference image snow-covered area estimation method for the boreal forest zone. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2009), Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Luojus, K.; Pulliainen, J.; Metsämäki, S.; Molera, G.; Nakari, R.; Kärnä, J.-P.; Hallikainen, M. Development of sar-based snow-covered area estimation method for borel forest zone. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 7–11 July 2008. [Google Scholar]
- Storvold, R.; Malnes, E.; Lauknes, I. Using ENVISAT ASAR wideswath data to retrieve snow covered area in mountainous regions. EARSeL eProceedings 2006, 4, 150–156. [Google Scholar]
- Pettianato, S.; Santi, E.; Brogioni, M.; Macelloni, G.; Paloscia, S.; Pampaloni, P. An operational algorithm for snow cover mapping by using optical and SAR data. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010. [Google Scholar]
- Longépé, N.; Allain, S.; Pottier, E. Toward an Operational Method for Refined Snow Characterization Using Dual-Polarization C-Band SAR Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 7–11 July 2008. [Google Scholar]
- Solberg, R.; Koren, H.; Malnes, E.; Haarpaintner, J.; Lauknes, I. An approach for multisensor harmonization in snow cover area mapping. In Proceedings of the IGARSS IEEE International Conference on Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006. [Google Scholar]
- Pettinato, S.; Santi, E.; Brogioni, M.; Paloscia, S.; Pampaloni, P. An operational algorithm for snow cover mapping in hydrological applications. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2009), Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Valenti, L.; Small, D.; Meier, E. Snow cover monitoring using multi-temporal Envisat/ASAR data. In Proceedings of the 5th EARSeL LISSIG (Land, Ice, Snow) Workshop, Bern, Switzerland, 11–13 February 2008. [Google Scholar]
- Solberg, R.; Huseby, R.B.; Koren, H.; Malnes, E. Time-series fusion of optical and SAR data for snow cover area mapping. In Proceedings of the 5th EARSeL LIS-SIG Workshop: Remote Sensing of Land Ice and Snow, Bern, Switzerland, 11–13 February 2008. [Google Scholar]
- Pettinato, S.; Santi, E.; Brogioni, M.; Macelloni, G.; Paloscia, S.; Pampaloni, P. Snow cover mapping by using optical and SAR data. In Proceedings of the Image and Signal Processing for Remote Sensing XV, Berlin, Germany, 31 August–2 September 2009. [Google Scholar]
- Solberg, R.; Amlien, J.; Koren, H.; Eikvil, L.; Malnes, E.; Storvold, R. Multi-sensor and time-series approaches for monitoring of snow parameters. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- He, G.; Hao, Y.; Xiao, P.; Feng, X.; Li, H.; Wang, Z. Snow recognition in mountain areas based on SAR and optical remote sensing data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Pratola, C.; Navarro-Sánchez, V.D. Snow Cover Monitoring in Hardangervidda and Sierra Nevada Protected Areas by using Sentinel-L Time Series. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Wendleder, A.; Dietz, A.J.; Schork, K. Mapping Snow Cover Extent Using Optical and SAR Data. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Thakur, P.; Garg, V.; Nikam, B.; Singh, S.; Chouksey, A.; Dhote, P.; Aggarwal, S.; Chauhan, P.; Kumar, A. Snow cover and glacier dynamics study using c-and l-band SAR datasets in parts of North West Himalaya. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Dehradun, India, 20–23 November 2018. [Google Scholar]
- Wang, S.; Yang, B.; Zhou, Y.; Wang, F.; Zhang, R.; Zhao, Q. Snow Cover Mapping and Ice Avalanche Monitoring from the Satellite Data of the Sentinels. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1765–1772. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y.; Venktaraman, G.; Park, S.-E. Potential assessment of SAR in compact and full polarimetry mode for snow detection. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Singh, G.; Venkataraman, G.; Rao, Y. The H/A/Alpha polarimetric decomposition theorem and complex wishart distribution for snow cover monitoring. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 8–11 July 2008. [Google Scholar]
- Freeman, A.; Durden, S. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Yajima, Y.; Yamada, H. A Four-Component Decomposition of POLSAR Images Based on the Coherency Matrix. IEEE Geosci. Remote Sens. Lett. 2006, 3, 292–296. [Google Scholar] [CrossRef]
- Touzi, R. Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters. IEEE Trans. Geosci. Remote Sens. 2007, 45, 73–84. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Hame, T. Volume Scattering Modeling in PolSAR Decompositions: Study of ALOS PALSAR Data Over Boreal Forest. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3838–3848. [Google Scholar] [CrossRef]
- Schmitt, A.; Wendleder, A.; Hinz, S. The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation. ISPRS J. Photogramm. Remote Sens. 2015, 102, 122–139. [Google Scholar] [CrossRef] [Green Version]
- Van Zyl, J.J.; Zebker, H.A.; Elachi, C. Imaging radar polarization signatures: Theory and observation. Radio Sci. 1987, 22, 529–543. [Google Scholar] [CrossRef]
- Ainsworth, T.; Cloude, S.; Lee, J. Eigenvector analysis of polarimetric SAR data. In Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Lüneburg, E. Foundations of the Mathematical Theory of Polarimetry; Final Report Phase; EML Consultants: Sri Jayawardenepura Kotte, Sri Lanka, July 2001. [Google Scholar]
- Allain, S.; Ferro-Famil, L.; Pottier, E. A polarimetric classification from PolSAR data using SERD/DERD parameters. In Proceedings of the 6th European Conference on Synthetic Aperture Radar (EUSAR 2006), Dresden, Germany, 16–18 May 2006. [Google Scholar]
- Lee, J.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
Sensor | SAR | Optical/Multispectral |
---|---|---|
Sensing mode | Active | Passive |
Wavelengths | 0.01~0.3 m | 0.3~1 μm |
Spatial resolution | PALSAR-2: 3~10 m COSMO-SkyMed: 3~15 m Sentinel-1: 5 × 20 m (Stripmap mode) | Landsat-8: 15~30 m Sentinel-2: 10~20 m MODIS: 250~500 m (not included thermal band) |
Temporal resolution | PALSAR-2: 14 days COSMO-SkyMed: ~5 days Sentinel-1: 6 days | Landsat-8: 16 days Sentinel-2: 5 days MODIS: 1 day |
Recorded snow characteristics | Surface roughness, dielectric property | Surface reflection |
Advantages | Day-and-night sensing under any weather condition; Possibility of interferometric and polarimetric information | Visually natural to interpret; High temporal resolution; Maturity of classification algorithms |
Drawbacks | Low temporal resolution; Challenging to interpret due to its imaging geometry; Significant geometric distortions and speckles | Hindered by cloud, darkness; Confusion between snow, ice, and cloud |
Snow Type | Dry Snow | Wet Snow |
---|---|---|
Backscattering source | Volume scattering from snowpack, Surface scattering at snow/ground interface | Surface scattering at air/snow interface |
Dominant factors influencing scattering mechanism [113] | Surface below snow (SAR frequency <~10 GHz), Grain size (SAR frequency > ~10 GHz) | Liquid water content (most important), Surface roughness |
Backscattering coefficient | High | Low |
The relationship between snowpack parameters and the amplitude of backscattering | ||
Snow wetness | −[114] | +[92,99,115] |
Snow grain size | +[106,116] | insignificant [117] |
Snow depth/thickness | +[116,118] +coarse-grained snowpack [96] −fine-grained snowpack [96] | −[117] |
Detection Approach | Backscattering-Based | InSAR-Based | PolSAR-Based |
---|---|---|---|
Background theory | The backscattering coefficent reduces when snow becomes wet | Coherence loss over snow covered surfaces | Scattering mechanisms of dry and wet snow and the surface behave differently |
Minimum numbers of required SAR images | 2 | 2 | 1 |
SAR image requirements | Pair sensed at the same geometry | Pair has a short temporal baseline | Image has dual or quad polarizations |
The complexity of the algorithms | Low | Medium | High |
Primarily analyzed component | Backscattering coefficient | Coherence | Polarimetric parameters |
LIA dependency | High | Medium | Low |
The richness of derived information | Medium | Low | High |
The noisiness of derived information | High | Low | Medium |
Snow Type Sensing Capability | |||
Wet snow | Yes | No | Yes |
Dry snow | No | No | Yes |
Total snow | No | Yes | Yes |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, Y.-L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sens. 2019, 11, 1456. https://doi.org/10.3390/rs11121456
Tsai Y-LS, Dietz A, Oppelt N, Kuenzer C. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sensing. 2019; 11(12):1456. https://doi.org/10.3390/rs11121456
Chicago/Turabian StyleTsai, Ya-Lun S., Andreas Dietz, Natascha Oppelt, and Claudia Kuenzer. 2019. "Remote Sensing of Snow Cover Using Spaceborne SAR: A Review" Remote Sensing 11, no. 12: 1456. https://doi.org/10.3390/rs11121456