Hybrid Scene Structuring for Accelerating 3D Radiative Transfer Simulations
Abstract
:1. Introduction
2. Methods
2.1. Uniform Grid in Discrete Anisotropic Radiative Transfer (DART)
2.2. Hybrid Scene Structuring
2.2.1. Voxel-Level Ray Tracking
2.2.2. Within-Voxel Ray Tracking
2.2.3. Implementation
2.3. Radiation Tracking
2.4. Performance Evaluation Using Three-Dimensional (3D) Realistic Scenes
2.4.1. BASEL City Scene
2.4.2. RAMI Forest Scene
3. Results
4. Discussion
4.1. Accuracy
4.2. Memory Usage
4.3. Computation Time
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Myneni, R.B.; Ramakrishna, R.; Nemani, R.; Running, S.W. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1380–1393. [Google Scholar] [CrossRef]
- Sehgal, V.K.; Chakraborty, D.; Sahoo, R.N. Inversion of radiative transfer model for retrieval of wheat biophysical parameters from broadband reflectance measurements. Inf. Process. Agric. 2016, 3, 107–118. [Google Scholar] [CrossRef]
- Landier, L.; Lauret, N.; Yin, T.; Al Bitar, A.; Gastellu-Etchegorry, J.; Feigenwinter, C.; Parlow, E.; Mitraka, Z.; Chrysoulakis, N. Remote Sensing Studies of Urban Canopies: 3D Radiative Transfer Modeling. In Sustainable Urbanization; InTech: London, UK, 2016. [Google Scholar]
- Myneni, R.B.; Ross, J. Photon—Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.P.; Martin, E.; Gascon, F. DART: A 3D model for simulating satellite images and studying surface radiation budget. Int. J. Remote Sens. 2004, 25, 73–96. [Google Scholar] [CrossRef]
- Chen, S.; Liu, L.; Zhang, X.; Liu, X.; Chen, X.; Qian, X.; Xu, Y.; Xie, D. Retrieval of the Fraction of Radiation Absorbed by Photosynthetic Components (FAPARgreen) for Forest using a Triple-Source Leaf-Wood-Soil Layer Approach. Remote Sens. 2019, 11, 2471. [Google Scholar] [CrossRef]
- Ben-Arie, J.R.; Hay, G.J.; Powers, R.P.; Castilla, G.; St-Onge, B. Development of a pit filling algorithm for LiDAR canopy height models. Comput. Geosci. 2009, 35, 1940–1949. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. AIBS Bull. 2002, 52, 19–30. [Google Scholar]
- Banskota, A.; Serbin, S.P.; Wynne, R.H.; Thomas, V.A.; Falkowski, M.J.; Kayastha, N.; Gastellu-Etchegorry, J.P.; Townsend, P.A. An LUT-Based Inversion of DART Model to Estimate Forest LAI from Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3147–3160. [Google Scholar] [CrossRef]
- Disney, M.I.; Lewis, P.; North, P. Monte Carlo ray tracing in optical canopy reflectance modelling. Remote Sens. Rev. 2000, 18, 163–196. [Google Scholar] [CrossRef]
- McNeill, M.; Shah, B.; Hebert, M.-P.; Lister, P.F.; Grimsdale, R.L. Performance of space subdivision techniques in ray tracing. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 1992; Volume 11, pp. 213–220. [Google Scholar]
- Glassner, A.S. Space subdivision for fast ray tracing. IEEE Comput. Graph. Appl. 1984, 4, 15–24. [Google Scholar] [CrossRef]
- Govaerts, Y.M.; Verstraete, M.M. Raytran: A Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Trans. Geosci. Remote Sens. 1998, 36, 493–505. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.-P.; Yin, T.; Lauret, N.; Cajgfinger, T.; Gregoire, T.; Grau, E.; Feret, J.-B.; Lopes, M.; Guilleux, J.; Dedieu, G.; et al. Discrete Anisotropic Radiative Transfer (DART 5) for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes. Remote Sens. 2015, 7, 1667–1701. [Google Scholar] [CrossRef]
- Qi, J.; Xie, D.; Guo, D.; Yan, G. A Large-Scale Emulation System for Realistic Three-Dimensional (3-D) Forest Simulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4834–4843. [Google Scholar] [CrossRef]
- Cleary, J.G.; Wyvill, G. Analysis of an algorithm for fast ray tracing using uniform space subdivision. Vis. Comput. 1988, 4, 65–83. [Google Scholar] [CrossRef]
- Sung, K.; Shirley, P. Ray tracing with the BSP tree. In Graphics Gems III; Academic Press Professional, Inc.: Cambridge, MA, USA, 1992; pp. 271–274. [Google Scholar]
- Lauterbach, C.; Garland, M.; Sengupta, S.; Luebke, D.; Manocha, D. Fast BVH construction on GPUs. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2009; Volume 28, pp. 375–384. [Google Scholar]
- Müller, G.; Fellner, D.W. Hybrid scene structuring with application to ray tracing. In Proceedings of the Proceedings of the International Conference on Visual Computing (ICVC’99); 1999; pp. 19–26. [Google Scholar]
- Yin, T.; Gastellu-Etchegorry, J.-P.; Lauret, N.; Grau, E.; Rubio, J. A new approach of direction discretization and oversampling for 3D anisotropic radiative transfer modeling. Remote Sens. Environ. 2013, 135, 213–223. [Google Scholar] [CrossRef]
- Grau, E.; Gastellu-Etchegorry, J.-P. Radiative transfer modeling in the Earth–Atmosphere system with DART model. Remote Sens. Environ. 2013, 139, 149–170. [Google Scholar] [CrossRef]
- Akenine-Möller, T. Fast 3D triangle-box overlap testing. In Proceedings of the ACM SIGGRAPH 2005 Courses, Los Angeles, CA, USA, 31 July–4 August 2005; ACM: New York, NY, USA, 2005; p. 8. [Google Scholar]
- Hughes, J.F.; Foley, J.D. Computer Graphics: Principles and Practice; Pearson Education: London, UK, 2014. [Google Scholar]
- Williams, A.; Barrus, S.; Morley, R.K.; Shirley, P. An efficient and robust ray-box intersection algorithm. In Proceedings of the ACM SIGGRAPH 2005 Courses, Los Angeles, CA, USA, 31 July–4 August 2005; ACM: New York, NY, USA, 2005; p. 9. [Google Scholar]
- Wald, I.; Woop, S.; Benthin, C.; Johnson, G.S.; Ernst, M. Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM Trans. Graph. 2014, 33, 143. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.-P.; Demarez, V.; Pinel, V.; Zagolski, F. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens. Environ. 1996, 58, 131–156. [Google Scholar] [CrossRef]
- Widlowski, J.-L.; Pinty, B.; Lopatka, M.; Atzberger, C.; Buzica, D.; Chelle, M.; Disney, M.; Gastellu-Etchegorry, J.-P.; Gerboles, M.; Gobron, N.; et al. The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528. J. Geophys. Res. Atmos. 2013, 118, 6869–6890. [Google Scholar] [CrossRef] [Green Version]
BASEL | Null Voxel (%) | Time (s) | Memory (GB) | ||||
---|---|---|---|---|---|---|---|
Resolution | Uniform | Hybrid | Speedup | Uniform | Hybrid | Decrease | |
1 m | 85.6% | 21 | 15 | 1.4× | 0.18 | 0.17 | 6% |
0.5 m | 91.3% | 161 | 94 | 1.7× | 0.86 | 0.56 | 35% |
0.25 m | 95.2% | 2000 | 540 | 3.7× | 5.4 | 2.7 | 50% |
Forest Scene | Null Voxel (%) | Time (s) | Memory (GB) | ||||
---|---|---|---|---|---|---|---|
Resolution | Uniform | Hybrid | Speedup | Uniform | Hybrid | Increase | |
0.5 m | 57.0 | 244,311 | 945 | 258.5× | 23.5 | 28.1 | 16% |
0.25 m | 69.7 | 31,622 | 1221 | 25.9× | 25.6 | 32.4 | 21% |
0.1 m | 84.9 | 14,277 | 2911 | 4.9× | 41.2 | 57.4 | 28% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Yin, T.; Xie, D.; Gastellu-Etchegorry, J.-P. Hybrid Scene Structuring for Accelerating 3D Radiative Transfer Simulations. Remote Sens. 2019, 11, 2637. https://doi.org/10.3390/rs11222637
Qi J, Yin T, Xie D, Gastellu-Etchegorry J-P. Hybrid Scene Structuring for Accelerating 3D Radiative Transfer Simulations. Remote Sensing. 2019; 11(22):2637. https://doi.org/10.3390/rs11222637
Chicago/Turabian StyleQi, Jianbo, Tiangang Yin, Donghui Xie, and Jean-Philippe Gastellu-Etchegorry. 2019. "Hybrid Scene Structuring for Accelerating 3D Radiative Transfer Simulations" Remote Sensing 11, no. 22: 2637. https://doi.org/10.3390/rs11222637