Quantitative Evaluation of Environmental Loading Induced Displacement Products for Correcting GNSS Time Series in CMONOC
Abstract
:1. Introduction
2. Data and Methodology
2.1. CMONOC and GNSS Time Series Analysis
2.2. Current Existing Environmental Loading Products
2.3. Evaluation Metrics
3. Results
3.1. Comparison of CWSL, NTAL, and NTOL Products
3.1.1. CWSL Products
3.1.2. NTAL Products
3.1.3. NTOL Products
3.2. Optimal Combination of Environmental Loading Models
4. Discussion
4.1. Effects of Different Environmental Loading Products on Noise Characterization
4.2. Effects of Different Environmental Loading Products on Velocity Estimation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
3D | three dimensional |
AR1 | ARMA (1,0) first-order autogressive noise model |
CF frame | center of figure frame |
CMONOC | Crustal Movement Observation Network of China |
CWS | Continental Water Storage |
CWSL | Continental Water Storage Loading |
DORIS | Doppler Orbitography and Radiopositioning Integrated by Satellite |
DP | dilution of precision |
ECCO1 | Estimating the Circulation and Climate of the Ocean |
ECCO2 | follow-on ECCO, Phase II |
ECMWF | European Center for Medium-Range Weather Forecasts |
EOST | School and Observatory of Earth Sciences |
ERA interim | era-interim |
FN | flicker noise |
FNWN | flicker noise plus white noise |
GEOSFPIT | Global Earth Observing System Forward Processing Instrumental Team |
GFZ | German Research Centre for Geosciences |
GGFC | Global Geophysical Fluid Center |
GGM | generalized Gauss-Markov noise |
GLDAS | Global Land Data Assimilation System |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
GRGS | CGNSS and DORIS |
HYDL | hydrological loading |
IGS | International GNSS Service |
IMLS | International Mass Loading Service |
IQR | interquartile range |
ITRF | International Terrestrial Reference Frame |
JPL | Jet Propulsion Laboratory |
LLN | Load Love Numbers |
LSDM | Land Surface Discharge Model |
MERRA | Modern-Era Retrospective Analysis for Research and Applications |
MERRA2 | Modern-Era Retrospective Analysis for Research and Applications, version 2 |
MLE | maximum likelihood estimation |
MPIOM | Max Planck Institute Ocean Model |
NASA | National Aeronautics and Space Administration |
NATML | non-tidal atmospheric pressure loading |
NTAL | non-tidal atmospheric loading |
NTOL | non-tidal ocean loading |
OMCT | Ocean Model for Circulation and Tides |
OMD | Optimum Model Data |
PL | power-law noise |
PLWN | power-law noise plus white noise |
QLM | Model of Quasi-Observation Combination Analysis software |
RMS | Root Mean Square |
RW | random walk noise |
SOPAC | Scripps Orbit and Permanent Array Center |
SLR | Satellite Laser Ranging |
VLBI | Very Long Baseline Interferometry |
WN | white noise |
WRMS | weighted root mean square |
Appendix A
References
- Jiang, W.; Xia, C.; Li, Z.; Guo, Q.; Zhang, S. Analysis of Environmental Loading Effects on Regional GPS Coordinate Time Series. Acta Geod. Cartogr. Sin. 2014, 43, 1217–1223. [Google Scholar] [CrossRef] [Green Version]
- Blewitt, G.; Lavallée, D.; Clarke, P.; Nurutdinov, K. A new global mode of earth deformation: Seasonal cycle detected. Science 2001, 294, 2342–2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blewitt, G.; Lavallée, D. Effect of annual signals on geodetic velocity. J. Geophys. Res. Solid Earth. 2002, 107, ETG-9. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Yuan, P.; Chen, H.; Cai, J.; Li, Z.; Chao, N.; Sneeuw, N. Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, W.B.; Shum, C.K.; Chen, R. Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data. Earth Planet. Sci. Lett. 2018, 502, 12–22. [Google Scholar] [CrossRef]
- van Dam, T.M.; Herring, T.A. Detection of atmospheric pressure loading using very long baseline interferometry measurements. J. Geophys. Res. Solid Earth. 1994, 99, 4505–4517. [Google Scholar] [CrossRef]
- van Dam, T.M.; Blewitt, G.; Heflin, M.B. Atmospheric pressure loading effects on Global Positioning System coordinate determinations. J. Geophys. Res. Solid Earth 1994, 99, 23939–23950. [Google Scholar] [CrossRef]
- Dong, D.; Fang, P.; Bock, Y.; Cheng, M.K.; Miyazaki, S. Anatomy of apparent seasonal variations from GPS-derived site position time series. J. Geophys. Res. Solid Earth. 2002, 107, ETG-9. [Google Scholar] [CrossRef] [Green Version]
- Tregoning, P. Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.D.P.; Penna, N.T. Non-tidal ocean loading effects on geodetic GPS heights. Geophys. Res. Lett. 2011, 38, 3–7. [Google Scholar] [CrossRef] [Green Version]
- van Dam, T.; Collilieux, X.; Wuite, J.; Altamimi, Z.; Ray, J. Nontidal ocean loading: Amplitudes and potential effects in GPS height time series. J. Geod. 2012, 86, 1043–1057. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Jiang, W.; Li, Z.; Chen, H.; Wang, K.; Ma, Y. Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series. J. Geod. 2017, 91, 207–227. [Google Scholar] [CrossRef]
- Yuan, P.; Li, Z.; Jiang, W.; Ma, Y.; Chen, W.; Sneeuw, N. Influences of environmental loading corrections on the nonlinear variations and velocity uncertainties for the reprocessed global positioning system height time series of the crustal movement observation network of China. Remote Sens. 2018, 10, 958. [Google Scholar] [CrossRef] [Green Version]
- Yuan, P.; Jiang, W.; Wang, K.; Sneeuw, N. Effects of spatiotemporal filtering on the periodic signals and noise in the GPS position time series of the Crustal Movement Observation Network of China. Remote Sens. 2018, 10, 1472. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.G.; Montecino, H.D.; Ndehedehe, C.E.; del Rio, R.A.; Cuevas, A.; de Freitas, S.R.C. Determining seasonal displacements of Earth’s crust in South America using observations from space-borne geodetic sensors and surface-loading models. Earth Planets Sp. 2019, 71, 84. [Google Scholar] [CrossRef] [Green Version]
- Petrov, L. The international mass loading service. Int. Assoc. Geod. Symp. 2017, 146, 79–83. [Google Scholar]
- Petrov, L.; Boy, J.-P. Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J. Geophys. Res. Solid Earth. 2004, 109, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Andrei, C.O.; Lahtinen, S.; Nordman, M.; Näränen, J.; Koivula, H.; Poutanen, M.; Hyyppä, J. GPS time series analysis from Aboa the Finnish Antarctic research station. Remote Sens. 2018, 10, 1937. [Google Scholar] [CrossRef] [Green Version]
- Klos, A.; Gruszczynska, M.; Bos, M.S.; Boy, J.P.; Bogusz, J. Estimates of Vertical Velocity Errors for IGS ITRF2014 Stations by Applying the Improved Singular Spectrum Analysis Method and Environmental Loading Models. Pure Appl. Geophys. 2018, 175, 1823–1840. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Z.; van Dam, T.; Ding, W. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. J. Geod. 2013, 87, 687–703. [Google Scholar] [CrossRef]
- Li, Z.; van Dam, T.; Collilieux, X.; Altamimi, Z.; Rebischung, P.; Nahmani, S. Quality Evaluation of the Weekly Vertical Loading Effects Induced from Continental Water Storage Models. IAG 150 Years. Int. Assoc. Geod. Symp. 2015, 143, 45–54. [Google Scholar]
- Xu, C. Evaluating mass loading products by comparison to GPS array daily solutions. Geophys. J. Int. 2017, 208, 24–35. [Google Scholar] [CrossRef]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2. User manual; University of Bern: Bern, Switzerland, 2015. [Google Scholar]
- Wu, W. High-precision GPS data processing and contemporary crustal deformation in China mainland. Ph.D. thesiS, Tongji University, Shanghai, China, 2018. [Google Scholar]
- Bos, M.S.; Fernandes, R.M.S.; Williams, S.D.P.; Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Bock, Y.; Johnson, H.; Fang, P.; Williams, S.; Genrich, J.; Wdowinski, S.; and Behr, J. Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities. J. Geophys. Res. Solid Earth. 1997, 102, 18035–18055. [Google Scholar] [CrossRef]
- Dill, R.; Dobslaw, H. Numerical simulations of global-scale high-resolution hydrological crustal deformations. J. Geophys. Res. Solid Earth. 2013, 118, 5008–5017. [Google Scholar] [CrossRef]
- Farrell, W.E. Deformation of the Earth by surface loads. Rev. Geophys. 1972, 10, 761–797. [Google Scholar] [CrossRef]
- Gegout, P.; Boy, J.P.; Hinderer, J.; Ferhat, G. Modeling and Observation of Loading Contribution to Time-Variable GPS Sites Positions. Int. Assoc. Geod. Symp. 2010, 135, 651–659. [Google Scholar]
- Dong, D.; Yunck, T.; Heflin, M. Origin of the International Terrestrial Reference Frame. J. Geophys. Res. Solid Earth 2003, 108, 1–10. [Google Scholar] [CrossRef]
- Blewitt, G. Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res. Solid Earth 2003, 108(B2). Available online: https://doi.org/10.1029/2002JB002082 (accessed on 9 February 2020). [CrossRef] [Green Version]
- Dill, R. Hydrological model LSDM for operational Earth rotation and gravity eld variations. Sci. Tech. Rep. 08/09 2008, 369. Available online: https://doi.org/10.2312/GFZ.b103-08095 (accessed on 9 February 2020). [CrossRef]
- Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim archive Version 2.0. Available online: http://www.ecmwf.int/publications/ (accessed on 9 February 2020).
- Rodell, M.; Houser, P.R.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J.; Song, I.-S.; Eichmann, A. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna, NASA/TM—2012. Available online: http://gmao.gsfc.nasa.gov/pubs/docs/tm28.pdf (accessed on 9 February 2020).
- Reichle, R.H.; Draper, C.S.; Liu, Q.; Girotto, M.; Mahanama, S.P.P.; Koster, R.D.; De Lannoy, G.J.M. Assessment of MERRA-2 land surface hydrology estimates. J. Clim. 2017, 30, 2937–2960. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Jungclaus, J.H.; Fischer, N.; Haak, H.; Lohmann, K.; Marotzke, J.; Matei, D.; Mikolajewicz, U.; Notz, D.; Von Storch, J.S. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 2013, 5, 422–446. [Google Scholar] [CrossRef]
- Menemenlis, D.; Campin, J.-M.; Heimbach, P.; Hill, C.N.; Lee, T.; Nguyen, A.T.; Schodlok, M.P.; Zhang, H. ECCO2: High resolution global ocean and sea ice data synthesis. Mercat. Ocean Q. Newsl. 2008, 31, 13–21. [Google Scholar]
- Dobslaw, H.; Thomas, M. Simulation and observation of global ocean mass anomalies. J. Geophys. Res. Ocean. 2007, 112, 1–11. [Google Scholar] [CrossRef]
- van Dam, T.; Wahr, J.; Lavallée, D. A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe. J. Geophys Res. Solid Earth 2007, 112, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q. Analyzing and Modeling Environmental Loading Induced Displacements with GPS and GRACE. Ph.D. Thesis, Stuttgart University, Stuttgart, Germany, 2015. [Google Scholar]
- Zhu, K. Subtropical China. Scinece Bull. 1958, 17, 524–528. [Google Scholar] [CrossRef] [Green Version]
- King, M.; Moore, P.; Clarke, P.; Lavallée, D. Choice of optimal averaging radii for temporal GRACE gravity solutions, a comparison with GPS and satellite altimetry. Geophys. J. Int. 2006, 166, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nordman, M.; Mäkinen, J.; Virtanen, H.; Johansson, J.M.; Bilker-Koivula, M.; Virtanen, J. Crustal loading in vertical GPS time series in Fennoscandia. J. Geodyn. 2009, 48, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Tesmer, V.; Steigenberger, P.; van Dam, T.; Mayer-Gürr, T. Vertical deformations from homogeneously processed GRACE and global GPS long-term series. J. Geod. 2011, 85, 291–310. [Google Scholar] [CrossRef]
- Penna, N.T.; King, M.A.; Stewart, M.P. GPS height time series: Short-period origins of spurious long-period signals. J. Geophys. Res. Solid Earth. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005JB004047 (accessed on 9 February 2020). [CrossRef] [Green Version]
- Li, Z.; Yue, J.; Li, W.; Lu, D.; Li, X. A comparison of hydrological deformation using GPS and global hydrological model for the Eurasian plate. Adv. Sp. Res. 2017, 60, 587–596. [Google Scholar] [CrossRef]
- Wu, S.; Nie, G.; Liu, J.; Xue, C.; Wang, J.; Li, H.; Peng, F. Analysis of deterministic and stochastic models of GPS stations in the crustal movement observation network of China. Adv. Sp. Res. 2019, 64, 335–351. [Google Scholar] [CrossRef]
- Bierens, H. Information Criteria and Model Selection; Pennsylvania State University: State College, PA, USA, 2006; Available online: http://faculty.wcas.northwestern.edu/~lchrist/course/assignment2/INFORMATIONCRIT.pdf (accessed on 9 February 2020).
- Xu, C.; Ding, K.; Cai, J.; Grafarend, E.W. Methods of determining weight scaling factors for geodetic-geophysical joint inversion. J. Geodyn. 2009, 47, 39–46. [Google Scholar] [CrossRef]
- Fukahata, Y.; Nishitani, A.; Matsu’ura, M. Geodetic data inversion using ABIC to estimate slip history during one earthquake cycle with viscoelastic slip-response functions. Geophys. J. Int. 2004, 156, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Yabuki, T.; Matsu’ura, M. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophys. J. Int. 1992, 109, 363–375. [Google Scholar] [CrossRef]
- Williams, S.D.P. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J. Geod. 2003, 76, 483–494. [Google Scholar] [CrossRef]
- Williams, S.D.P. Error analysis of continuous GPS position time series. J. Geophys. Res. Solid Earth. 2004, 109, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Wang, Q.; Wu, Y.; Du, R. Time Series Characteristic of GPS Fiducial Stations in China. Geomatics Inf. Sci. Wuhan Univ. 2003, 28, 413–416. [Google Scholar] [CrossRef]
- Huang, L. Noise properties in time series of coordinate component at GPS fiducial stations. J. Geod. Geodyn. 2006, 26, 31–38. [Google Scholar] [CrossRef]
- Zhu, W.; Fu, Y.; Li, Y. Global Height Vibration and Its Seasonal Variation Induced by GPS Height. Sci. ChinaSeries D 2003, 33, 470–481. [Google Scholar] [CrossRef]
- Mao, A.; Harrison, C.G.A.; Dixon, T.H. Noise in GPS coordinate time series. J. Geophys. Res. Solid Earth. 1999, 104, 2797–2816. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Fu, Y. Analysis on the noises from continuously monitoring GPS sites. ACTA Seismol. Sin. 2007, 20, 206–211. [Google Scholar] [CrossRef]
- He, X.; Bos, M.S.; Montillet, J.P.; Fernandes, R.M.S. Investigation of the noise properties at low frequencies in long GNSS time series. J. Geod. 2019, 93, 1271–1282. [Google Scholar] [CrossRef]
- van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P. GGFC Special Bureau for Loading: Current Status and Plans. Proc. IERS Work. Comb. Res. Glob. Geophys. Fluids, IERS Tech. 2003, 30, 180–198. [Google Scholar]
Type | Institution | Model used | Spatial/Time | Time span |
---|---|---|---|---|
CWSL | GFZ | LSDM forced by ECWMF [32] | 0.5° × 0.5°/24 h | 1976–present |
EOST | ERA interim [33] | 0.5° × 0.5°/6 h | 1979–present | |
GLDAS/Noah [34] | 0.5° × 0.5°/3 h | 2000–2016 | ||
NASA | Global Earth Observing System Forward Processing Instrumental Team (GEOSFPIT) [35] | 2′ × 2′/3h | 2000–present | |
MERRA2 [36] | 2′ × 2′/3 h | 1980–present | ||
NTAL | GFZ | ECMWF (http://ecmwf.int) | 0.5° × 0.5°/3 h | 1976–present |
EOST | ECMWF(IB): assuming an inverted barometer ocean response to pressure forcing | 0.5° × 0.5°/3 h | 2000–present | |
ECMWF (assuming a dynamic ocean response to pressure and winds from TUGO-m barotropic model) | 0.5° × 0.5°/3 h | 2002–2017 | ||
ERA interim | 0.5° × 0.5°/6 h | 1979–present | ||
NASA | GEOSFPIT | 2′ × 2′/3 h | 2000–present | |
MERRA2 [37] | 2′ × 2′/6 h | 1980–2017 | ||
NTOL | GFZ | EMPIOM (3 hourly ocean model EMPIOM) [38] | 1° × 1°/3 h | 1976–present |
EOST | ECCO1 (http://ecco.jpl.nasa.gov) | 0.5° × 0.5°/12 h | 1993–present | |
ECCO2 [39] | 0.5° × 0.5°/24 h | 1992–2015 | ||
NASA | MPIOM06 (6 hourly ocean model MPIOM) | 2′× 2′/3 h | 1980–present | |
OMCT05 (OMCT: Ocean Model for Circulation and Tides model) [40] | 2′×2′/6 h | 1980–2017 |
GFZ -LSDM | EOST -ERA Interim | EOST -GLDAS | NASA -GEOSFPIT | NASA -MERRA2 | |
---|---|---|---|---|---|
GFZ-LSDM | -- | −3.63 | −7.81 | −7.79 | −8.63 |
EOST-ERA Interim | -- | -- | −4.18 | −4.16 | −5.00 |
EOST-GLDAS | -- | -- | -- | 0.03 | −0.82 |
NASA-GEOSFPIT | -- | -- | -- | -- | −0.85 |
NASA-MERRA2 | -- | -- | -- | -- | -- |
GFZ-ECWMF | EOST-ECWMF_IB | EOST-ECWMF | EOST-ERA Interim | NASA-GEOSFPIT | NASA-MERRA2 | |
---|---|---|---|---|---|---|
GFZ-ECWMF | -- | 0 | 1.67 | 0.33 | −0.68 | −0.55 |
EOST-ECWMF_IB | -- | -- | 1.66 | 0.33 | −0.68 | −0.56 |
EOST-ECWMF | -- | -- | -- | −1.34 | −2.35 | −2.22 |
EOST-ERA Interim | -- | -- | -- | -- | −1.01 | −0.88 |
NASA-GEOSFPIT | -- | -- | -- | -- | -- | 0.13 |
NASA-MERRA2 | -- | -- | -- | -- | -- | -- |
GFZ -EMPIOM | EOST -ECCO1 | EOST -ECCO2 | NASA -MPIOM06 | NASA -OMCT05 | |
---|---|---|---|---|---|
GFZ-EMPIOM | -- | −0.46 | −0.51 | −0.19 | −0.73 |
EOST-ECCO1 | -- | -- | 0.05 | −0.66 | −1.20 |
EOST-ECCO2 | -- | -- | -- | −0.71 | −1.24 |
NASA-MPIOM06 | -- | -- | -- | -- | −0.54 |
NASA-OMCT05 | -- | -- | -- | -- | -- |
Combination | Alias | Max | Min | Median | Mean | Positive |
---|---|---|---|---|---|---|
GFZ-LSDM &GFZ-ECWMF(IB)&GFZ-EMPIOM(IB) | A | 38.11 | −11.28 | 23.63 | 22.8 | 98.18 |
EOST-GLDAS &EOST-ECWMF(IB )&EOST-ECCO1 | B | 44.19 | −11.12 | 26.78 | 24.93 | 98.18 |
NASA-MERRA2 &NASA-GEOSFPIT&NASA-OMCT05 | C | 42.63 | −12.12 | 26.46 | 25.19 | 97.73 |
NASA-MERRA2 &EOST-ECWMF(IB)&EOST-ECCO2 | D | 42.82 | −13.22 | 26.91 | 25.42 | 98.64 |
GFZ-LSDM &EOST-ECWMF&EOST-ECCO1 | E | 38.29 | −34.47 | 22.43 | 20.66 | 95.00 |
EOST-ERA interim &EOST-ECWMF&EOST-ECCO1 | F | 39.92 | −31.02 | 24.26 | 22.22 | 94.55 |
NASA-GEOSFPIT &NASA-MERRA2&NASA-MPIOM06 | G | 44.67 | −12.94 | 25.97 | 24.53 | 97.73 |
A | B | C | D | E | F | G | |
---|---|---|---|---|---|---|---|
A | -- | −3.15 | −2.83 | −3.28 | 1.20 | −0.63 | −2.34 |
B | -- | -- | 0.32 | −0.13 | 4.35 | 2.52 | 0.81 |
C | -- | -- | -- | −0.45 | 4.03 | 2.20 | 0.49 |
D | -- | -- | -- | -- | 4.48 | 2.65 | 0.94 |
E | -- | -- | -- | -- | -- | −1.83 | −3.54 |
F | -- | −1.71 | |||||
G | -- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Huang, S.; Chen, Q.; Dam, T.v.; Fok, H.S.; Zhao, Q.; Wu, W.; Wang, X. Quantitative Evaluation of Environmental Loading Induced Displacement Products for Correcting GNSS Time Series in CMONOC. Remote Sens. 2020, 12, 594. https://doi.org/10.3390/rs12040594
Li C, Huang S, Chen Q, Dam Tv, Fok HS, Zhao Q, Wu W, Wang X. Quantitative Evaluation of Environmental Loading Induced Displacement Products for Correcting GNSS Time Series in CMONOC. Remote Sensing. 2020; 12(4):594. https://doi.org/10.3390/rs12040594
Chicago/Turabian StyleLi, Chenfeng, Shengxiang Huang, Qiang Chen, Tonie van Dam, Hok Sum Fok, Qian Zhao, Weiwei Wu, and Xinpeng Wang. 2020. "Quantitative Evaluation of Environmental Loading Induced Displacement Products for Correcting GNSS Time Series in CMONOC" Remote Sensing 12, no. 4: 594. https://doi.org/10.3390/rs12040594