Evaluation of GPM-Era Satellite Precipitation Products on the Southern Slopes of the Central Himalayas Against Rain Gauge Data
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Datasets
2.2.1. Rain Gauge Data
2.2.2. Satellite Datasets
2.3. Methodology
2.3.1. Quality Control
2.3.2. Statistical Analysis
3. Results
3.1. Spatiotemporal Variability
3.1.1. The Spatial Pattern of Precipitation in Nepal
3.1.2. Seasonal Pattern of Precipitation in Nepal
3.1.3. Elevation Dependency
3.2. Performance-Based on Daily Data
3.2.1. Statistical Scores
3.2.2. Extreme Precipitation Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Seasons | Datasets | Mean (mm/day) | MB (mm/day) | RRMSE | R |
---|---|---|---|---|---|
Pre-monsoon (March-May) | IMERG-UC | 3.99 | 1.33 | 0.59 | 0.98 |
IMERG-C | 2.18 | −0.48 | 0.2 | 0.99 | |
GSMaP-MVK | 4.6 | 1.94 | 0.85 | 0.88 | |
GSMaP-Gauge | 2.45 | −0.21 | 0.22 | 0.93 | |
Monsoon (June–September) | IMERG-UC | 8.86 | −2.58 | 0.29 | 0.9 |
IMERG-C | 9.32 | −2.11 | 0.2 | 1 | |
GSMaP-MVK | 6.5 | −4.93 | 0.52 | 0.67 | |
GSMaP-Gauge | 8.94 | −2.5 | 0.25 | 0.95 | |
Post-monsoon (October–November) | IMERG-UC | 1.23 | 0.26 | 0.81 | 0.79 |
IMERG-C | 0.82 | −0.15 | 0.22 | 1 | |
GSMaP-MVK | 1.12 | 0.15 | 0.64 | 0.83 | |
GSMaP-Gauge | 0.99 | 0.02 | 0.08 | 1 | |
Winter (December–Feburary) | IMERG-UC | 0.48 | 0.02 | 0.2 | 0.98 |
IMERG-C | 0.42 | −0.03 | 0.08 | 1 | |
GSMaP-MVK | 0.7 | 0.25 | 0.97 | 0.84 | |
GSMaP-Gauge | 0.32 | −0.13 | 0.35 | 0.94 |
References
- Daly, C.; Slater, M.E.; Roberti, J.A.; Laseter, S.H.; Swift, L.W. High-resolution precipitation mapping in a mountainous watershed: Ground truth for evaluating uncertainty in a national precipitation dataset. Int. J. Climatol. 2017, 37, 124–137. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Ziese, M.; Meyer-Christoffer, A.; Finger, P.; Rustemeier, E.; Becker, A. The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources. P. Int. Ass. Hydrol. Sci. 2016, 374, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Viviroli, D.; Weingartner, R. The hydrological significance of mountains: From regional to global scale. Hydrol. Earth Syst. Sci. 2004, 8, 1016–1029. [Google Scholar] [CrossRef] [Green Version]
- Viviroli, D.; Durr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.B.; Hamlet, A.F.; Huang, Y.; Koboltschnig, G.; Litaor, M.I.; Lopez-Moreno, J.I.; et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef] [Green Version]
- Krakauer, N.Y.; Pradhanag, S.M.; Lakhankar, T.; Jha, A.K. Evaluating Satellite Products for Precipitation Estimation in Mountain Regions: A Case Study for Nepal. Remote Sens. (Basel) 2013, 5, 4107–4123. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Khadka, N.; Hamal, K.; Baniya, B.; Luintel, N.; Joshi, B.B. Spatial and Temporal Analysis of Precipitation and Its Extremities in Seven Provinces of Nepal (2001–2016). Appl. Ecol. Environ. Sci. 2020, 8, 64–73. [Google Scholar]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rew. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Petersen, W.A.; Christian, H.J.; Rutledge, S.A. TRMM observations of the global relationship between ice water content and lightning. Geophys Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Diodato, N.; Tartari, G.; Bellocchi, G. Geospatial Rainfall Modelling at Eastern Nepalese Highland from Ground Environmental Data. Water Resour. Manag. 2010, 24, 2703–2720. [Google Scholar] [CrossRef]
- Barros, A.P.; Lang, T.J. Monitoring the monsoon in the Himalayas: Observations in central Nepal, June 2001. Mon. Weather Rev. 2003, 131, 1408–1427. [Google Scholar] [CrossRef]
- Islam, M.; Das, S.; Uyeda, H. Calibration of TRMM derived rainfall over Nepal during 1998–2007. Open Atmospheric Sci. J. 2010, 4, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.D.; Peters-Lidard, C.D. A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Khairul, I.M.; Mastrantonas, N.; Rasmy, M.; Koike, T.; Takeuchi, K. Inter-Comparison of Gauge-Corrected Global Satellite Rainfall Estimates and Their Applicability for Effective Water Resource Management in a Transboundary River Basin: The Case of the Meghna River Basin (vol 6, 828, 2018). Remote Sens. 2018, 10, 828. [Google Scholar] [CrossRef] [Green Version]
- Seto, S.; Iguchi, T.; Oki, T. The Basic Performance of a Precipitation Retrieval Algorithm for the Global Precipitation Measurement Mission’s Single/Dual-Frequency Radar Measurements. IEEE Trans. Geosci. Remote. Sens. 2013, 51, 5239–5251. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Kidd, C.; Huffman, G. Global precipitation measurement. Meteorol. Appl. 2011, 18, 334–353. [Google Scholar] [CrossRef]
- Tang, G.Q.; Ma, Y.Z.; Long, D.; Zhong, L.Z.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Huffman, G.J. Algorithm Theoretical Basis Document (ATBD) Version 06. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG), NASA. Available online: https://pmm.nasa.gov/data-access/downloads/gpm (accessed on 10 January 2020).
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. IMERG V06: Changes to the Morphing Algorithm. J. Atmospheric Ocean. Technol. 2019, 36, 2471–2482. [Google Scholar] [CrossRef]
- Kubota, T.; Aonashi, K.; Ushio, T.; Shige, S.; Takayabu, Y.N.; Arai, Y.; Tashima, T.; Kachi, M.; Oki, R. Recent progress in global satellite mapping of precipitation (GSMaP) product. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2712–2715. [Google Scholar]
- Shen, Y.; Xiong, A.Y. Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol. 2016, 36, 252–265. [Google Scholar] [CrossRef]
- Tan, J.; Petersen, W.A.; Kirstetter, P.E.; Tian, Y.D. Performance of IMERG as a Function of Spatiotemporal Scale. J. Hydrometeorol. 2017, 18, 307–319. [Google Scholar] [CrossRef]
- Brown, J.E. An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions. Remote Sens. Environ. 2006, 101, 63–81. [Google Scholar] [CrossRef]
- Zhu, Q.; Luo, Y.; Zhou, D.; Xu, Y.-P.; Wang, G.; Gao, H. Drought Monitoring Utility using Satellite-Based Precipitation Products over the Xiang River Basin in China. Remote Sens. 2019, 11, 1483. [Google Scholar] [CrossRef] [Green Version]
- Satgé, F.; Ruelland, D.; Bonnet, M.-P.; Molina, J.; Pillco, R. Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow-hydrological modelling in the Lake Titicaca region. Hydrol. Earth Syst. Sci. 2019, 23, 595–619. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Yang, L.; Tian, F.; Ni, G.; Hou, A.; Lu, H. Intercomparisons of rainfall estimates from TRMM and GPM multisatellite products over the Upper Mekong River Basin. J. Hydrometeorol. 2017, 18, 413–430. [Google Scholar] [CrossRef]
- Tan, X.; Yong, B.; Ren, L. Error features of the hourly GSMaP multi-satellite precipitation estimates over nine major basins of China. Hydrol. Res. 2017, 49, 761–779. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Tan, M.L.; Li, X.; Wang, G.; He, R. Nine-Year Systematic Evaluation of the GPM and TRMM Precipitation Products in the Shuaishui River Basin in East-Central China. Remote Sens. 2020, 12, 1042. [Google Scholar] [CrossRef] [Green Version]
- Gebregiorgis, A.S.; Kirstetter, P.E.; Hong, Y.E.; Gourley, J.J.; Huffman, G.J.; Petersen, W.A.; Xue, X.; Schwaller, M.R. To what extent is the day 1 GPM IMERG satellite precipitation estimate improved as compared to TRMM TMPA-RT? J. Geophys. Res. Atmos. 2018, 123, 1694–1707. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Zhang, L.; Soe, K.M.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Applications of TRMM-and GPM-era multiple-satellite precipitation products for flood simulations at sub-daily scales in a sparsely gauged watershed in myanmar. Remote Sens. 2019, 11, 140. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yong, B. Quasi-Global Evaluation of IMERG and GSMaP Precipitation Products over Land Using Gauge Observations. Water 2020, 12, 243. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.N.; Ahmad, I.; Ding, Y.; Shangguan, D.; Zaman, M.; Ijaz, M.W.; Sarwar, K.; Han, H.; Yang, M. Assessment of IMERG-V06 Precipitation Product over Different Hydro-Climatic Regimes in the Tianshan Mountains, North-Western China. Remote Sens. 2019, 11, 2314. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Ouyang, L.; Yang, K.; Lu, H.; Chen, Y.; La, Z.; Zhou, X.; Wang, Y. Ground-based observations reveal unique valley precipitation patterns in the central Himalaya. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Retalis, A.; Katsanos, D.; Tymvios, F.; Michaelides, S. Validation of the first years of GPM operation over Cyprus. Remote Sens. 2018, 10, 1520. [Google Scholar] [CrossRef] [Green Version]
- Sungmin, O.; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.; Tan, J.; Petersen, W.A. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci. 2017, 21, 6559–6572. [Google Scholar]
- Cattani, E.; Merino, A.; Levizzani, V. Evaluation of Monthly Satellite-Derived Precipitation Products over East Africa. J. Hydrometeorol. 2016, 17, 2555–2573. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Rajagopal, E.; Pai, D. Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. Int. J. Clim. 2015, 36, 1614–1631. [Google Scholar] [CrossRef]
- Yatagai, A.; Kawamoto, H. Quantitative estimation of orographic precipitation over the Himalayas by using TRMM/PR and a dense network of rain gauges. Proc. Spie 2008, 7148. [Google Scholar] [CrossRef]
- Duncan, J.M.; Biggs, E.M. Assessing the accuracy and applied use of satellite-derived precipitation estimates over Nepal. Appl. Geogr. 2012, 34, 626–638. [Google Scholar] [CrossRef]
- Yamamoto, M.K.; Ueno, K.; Nakamura, K. Comparison of Satellite Precipitation Products with Rain Gauge Data for the Khumb Region, Nepal Himalayas. J. Meteorol. Soc. Jpn. 2011, 89, 597–610. [Google Scholar] [CrossRef] [Green Version]
- Derin, Y.; Anagnostou, E.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.-H.; Chen, H.; Delrieu, G.; Hsu, Y.C. Evaluation of GPM-era Global Satellite Precipitation Products over Multiple Complex Terrain Regions. Remote Sens. 2019, 11, 2936. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.; Ropelewski, C. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Wang, J.; Qiao, X.; Zhang, J. Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation Products over High Mountainous Tributaries in Lhasa with Dense Rain Gauges. Remote Sens. 2019, 11, 2080. [Google Scholar] [CrossRef] [Green Version]
- Gebregiorgis, A.S.; Hossain, F. Estimation of satellite rainfall error variance using readily available geophysical features. IEEE Trans. Geosci. Remote Sens. 2013, 52, 288–304. [Google Scholar] [CrossRef]
- Khadka, N.; Zhang, G.; Thakuri, S. Glacial lakes in the Nepal Himalaya: Inventory and decadal dynamics (1977–2017). Remote Sens. 2018, 10, 1913. [Google Scholar] [CrossRef] [Green Version]
- Nayava, J.L. Rainfall in Nepal. Himal. Rev. 1980, 12, 1–18. [Google Scholar]
- Department of Hydrology and Meteorology (DHM); Government of Nepal. Observed Climate Trend Analysis of Nepal (1971–2014); Department of Hydrology and Meteorology: Kathmandu, Nepal. Available online: http://www.dhm.gov.np/climate/ (accessed on 1 October 2019).
- Hamal, K.; Sharma, S.; Baniya, B.; Khadka, N.; Zhou, X. Inter-annual variability of Winter Precipitation over Nepal coupled with ocean-atmospheric patterns during 1987-2015. Front. Earth Sci. 2020, 8, 161. [Google Scholar] [CrossRef]
- Shrestha, M.L. Interannual variation of summer monsoon rainfall over Nepal and its relation to Southern Oscillation Index. Theor. Appl. Clim. 2000, 75, 21–28. [Google Scholar] [CrossRef]
- Talchabhadel, R.; Karki, R.; Parajuli, B. Intercomparison of precipitation measured between automatic and manual precipitation gauge in Nepal. Measurement 2017, 106, 264–273. [Google Scholar] [CrossRef]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.; Schneider, U.; Meyer-Christoffer, A.; Ziese, M.; Finger, P.; Stender, P.; Heller, A.; Breidenbach, J. GPCC Report for Years 2009 and 2010; DWD: Offenbach, Germany, 2011. [Google Scholar]
- Yatagai, A.; Arakawa, O.; Kamiguchi, K.; Kawamoto, H.; Nodzu, M.I.; Hamada, A. A 44-Year Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Sola 2009, 5, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 2019, 612, 69. [Google Scholar]
- Tan, J.; Huffman, G.J. Computing Morphing Vectors for Version 06 IMERG. Available online: https://gpm.nasa.gov/sites/default/files/document_files/MorphingInV06IMERG.pdf (accessed on 10 December 2019).
- Legates, D.R.; Willmott, C.J. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Clim. 1990, 10, 111–127. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. (ATBD) 2019, 6, 26. [Google Scholar]
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M.; et al. A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. J. Meteorol. Soc. Jpn. 2009, 87, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Shige, S.; Yamamoto, T.; Tsukiyama, T.; Kida, S.; Ashiwake, H.; Kubota, T.; Seto, S.; Aonashi, K.; Okamoto, K. The GSMaP Precipitation Retrieval Algorithm for Microwave Sounders-Part I: Over-Ocean Algorithm. IEEE Trans. Geosci. Remote 2009, 47, 3084–3097. [Google Scholar] [CrossRef]
- Lu, D.; Yong, B. Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau. Remote Sens. 2018, 10, 2022. [Google Scholar] [CrossRef] [Green Version]
- Liechti, T.C.; Matos, J.P.; Boillat, J.L.; Schleiss, A.J. Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin. Hydrol. Earth Syst. Sci. 2012, 16, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.M. Evaluation of Five Satellite-Based Precipitation Products in Two Gauge-Scarce Basins on the Tibetan Plateau. Remote Sens. (Basel) 2018, 10, 1316. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Lu, H.; Zhao, T.J.; Jiang, L.M.; Shi, J.C. Evaluation and Comparison of Daily Rainfall From Latest GPM and TRMM Products Over the Mekong River Basin. IEEE J.-Stars 2017, 10, 2540–2549. [Google Scholar] [CrossRef]
- Feidas, H. Validation of satellite rainfall products over Greece. Theor. Appl. Clim. 2010, 99, 193–216. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.W.; Hong, Y. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol. 2013, 500, 157–169. [Google Scholar] [CrossRef]
- Wang, G.F.; Zhang, X.W.; Zhang, S.Q. Performance of Three Reanalysis Precipitation Datasets over the Qinling-Daba Mountains, Eastern Fringe of Tibetan Plateau, China. Adv. Meteorol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Kansakar, S.R.; Hannah, D.M.; Gerrard, J.; Rees, G. Spatial pattern in the precipitation regime of Nepal. Int. J. Clim. 2004, 24, 1645–1659. [Google Scholar] [CrossRef]
- Derin, Y.; Yilmaz, K.K. Evaluation of Multiple Satellite-Based Precipitation Products over Complex Topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef] [Green Version]
- Bui, H.T.; Ishidaira, H.; Shaowei, N. Evaluation of the use of global satellite–gauge and satellite-only precipitation products in stream flow simulations. Appl. Water Sci. 2019, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.K.; Shige, S.; Yu, C.-K.; Cheng, L.-W. Further improvement of the heavy orographic rainfall retrievals in the GSMaP algorithm for microwave radiometers. J. Appl. Meteorol. Clim. 2017, 56, 2607–2619. [Google Scholar] [CrossRef]
- Ichiyanagi, K.; Yamanaka, M.D.; Muraji, Y.; Vaidya, B.K. Precipitation in Nepal between 1987 and 1996. Int. J. Clim. 2007, 27, 1753–1762. [Google Scholar] [CrossRef]
- Lang, T.J.; Barros, A.P. An investigation of the onsets of the 1999 and 2000 monsoons in central Nepal. Monthly Weather Rev. 2002, 130, 1299–1316. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Tahir, A.A.; Iqbal, M.; Adnan, M. Comparison of two successive versions 6 and 7 of TMPA satellite precipitation products with rain gauge data over Swat Watershed, Hindukush Mountains, Pakistan. Atmospheric Sci. Lett. 2016, 17, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Grody, N.C.; Weng, F. Microwave emission and scattering from deserts: Theory compared with satellite measurements. IEEE Trans. Geosci. Remote Sens. 2008, 46, 361–375. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, Y.; Chen, L.; Wang, Z.; Zhu, H.; Li, B. Inter-comparison and evaluation of remote sensing precipitation products over China from 2005 to 2013. Remote Sens. 2018, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Van Dijk, A.I.; Levizzani, V.; Schellekens, J.; Gonzalez Miralles, D.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25 global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.; Xue, X.; Zhang, X. Inter-comparison of high-resolution satellite precipitation products over Central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tang, J.; Xiong, Z.; Dong, X. Evaluation of High-Resolution Gridded Precipitation Data in Arid and Semiarid Regions: Heihe River Basin, Northwest China. J. Hydrometeorol. 2017, 18, 3075–3101. [Google Scholar] [CrossRef]
- Lakew, H.B.; Moges, S.A.; Asfaw, D.H. Hydrological evaluation of satellite and reanalysis precipitation products in the Upper Blue Nile Basin: A case study of Gilgel Abbay. Hydrology 2017, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Hailemariam, K.; Maidment, R.; Tarnavsky, E.; Connor, S. Combined use of satellite estimates and rain gauge observations to generate high-quality historical rainfall time series over Ethiopia. Int. J. Clim. 2014, 34, 2489–2504. [Google Scholar] [CrossRef] [Green Version]
- Derin, Y.; Anagnostou, E.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.H.; Delrieu, G.; Hong, Y.; Hsu, Y.C.; et al. Multiregional Satellite Precipitation Products Evaluation over Complex Terrain. J. Hydrometeorol. 2016, 17, 1817–1836. [Google Scholar] [CrossRef]
- Satge, F.; Hussain, Y.; Bonnet, M.P.; Hussain, B.M.; Martinez-Carvajal, H.; Akhter, G.; Uagoda, R. Benefits of the Successive GPM Based Satellite Precipitation Estimates IMERG-V03,-V04,-V05 and GSMaP-V06,-V07 Over Diverse Geomorphic and Meteorological Regions of Pakistan. Remote Sens. (Basel) 2018, 10, 1373. [Google Scholar] [CrossRef] [Green Version]
Datasets | Temporal Range | Spatial Resolution | Period | Coverage | Corrected by Gauges |
---|---|---|---|---|---|
DHM | 1 day | 388 stations | 2014–2016 | ||
IMERG-UC (V06B) | 30 min | 0.1º × 0.1º | 2014–2016 | 90ºN–90ºS | – |
IMERG-C (V06B) | 30 min | 0.1º × 0.1º | 2014–2016 | 90ºN–90ºS | GPCC monthly |
GSMaP-MVK (V07) | 1 h | 0.1º × 0.1º | 2014–2016 | 60ºN–60ºS | – |
GSMaP-Gauge (V07) | 1 h | 0.1º × 0.1º | 2014–2016 | 60ºN–60ºS | CPC-daily |
Gauge Observation | |||
---|---|---|---|
SBP | Precipitation No-precipitation | Precipitation | No-precipitation |
a | b | ||
c | d |
Regions | Datasets | Mean (mm/day) | MB (mm/day) | RRMSE | R |
---|---|---|---|---|---|
Western region | IMERG-UC | 3.86 | −0.03 | 0.50 | 0.92 |
IMERG-C | 3.52 | −0.31 | 0.14 | 1.00 | |
GSMaP-MVK | 3.51 | −0.32 | 0.82 | 0.81 | |
GSMaP-Gauge | 2.97 | −0.86 | 0.40 | 0.98 | |
Central region | IMERG-UC | 4.57 | −0.93 | 0.48 | 0.95 |
IMERG-C | 4.02 | −1.48 | 0.43 | 1.00 | |
GSMaP-MVK | 3.92 | −2.58 | 0.84 | 0.80 | |
GSMaP-Gauge | 4.69 | −0.82 | 0.33 | 0.98 | |
Eastern region | IMERG-UC | 4.75 | −0.47 | 0.41 | 0.94 |
IMERG-C | 4.73 | −0.46 | 0.18 | 1.00 | |
GSMaP-MVK | 3.71 | −1.50 | 0.71 | 0.83 | |
GSMaP-Gauge | 3.64 | −1.56 | 0.48 | 0.99 | |
Whole country | IMERG-UC | 4.31 | −0.47 | 0.44 | 0.95 |
IMERG-C | 3.93 | −0.86 | 0.28 | 1.00 | |
GSMaP-MVK | 3.73 | −1.05 | 0.76 | 0.81 | |
GSMaP-Gauge | 3.86 | −0.92 | 0.36 | 0.99 |
Elevation Range | No. of Stations | No. of Grids |
---|---|---|
Below 500 m | 121 | 354 |
500–1000 | 56 | 173 |
1000–1500 | 90 | 185 |
1500–2000 | 67 | 126 |
2000–2500 | 27 | 98 |
2500–3000 | 13 | 79 |
Regions | Datasets | Mean (mm/day) | MB (mm/day) | RRMSE | R | RE (%) |
---|---|---|---|---|---|---|
Below 1500 m (267 stations) | IMERG-UC | 10.67 | −0.85 | 0.57 | 0.08 | 7.36 |
IMERG-C | 9.73 | −1.79 | 0.47 | 0.41 | 15.58 | |
GSMaP-MVK | 7.36 | −4.16 | 0.58 | 0.36 | 36.08 | |
GSMaP-Gauge | 9.14 | −2.38 | 0.45 | 0.56 | 20.66 | |
Between 1500 and 2500 m (95 stations) | IMERG-UC | 7.11 | −5.31 | 0.70 | 0.24 | 42.75 |
IMERG-C | 9.34 | −3.07 | 0.56 | 0.46 | 24.74 | |
GSMaP-MVK | 4.99 | −7.42 | 0.78 | 0.49 | 59.82 | |
GSMaP-Gauge | 8.72 | −3.69 | 0.53 | 0.63 | 29.72 | |
Above 2500 m (26 stations) | IMERG-UC | 3.10 | −2.18 | 1.15 | 0.42 | 41.28 |
IMERG-C | 6.00 | 0.72 | 1.07 | 0.65 | 16.63 | |
GSMaP–MVK | 2.32 | −2.96 | 1.16 | 0.59 | 56.07 | |
GSMaP–Gauge | 7.78 | 1.50 | 1.44 | −0.02 | 28.48 | |
Whole country (388 stations) | IMERG-UC | 9.29 | −2.03 | 0.63 | 0.19 | 18.13 |
IMERG-C | 9.38 | −1.94 | 0.52 | 0.48 | 17.19 | |
GSMaP-MVK | 6.44 | −4.88 | 0.66 | 0.40 | 43.10 | |
GSMaP-Gauge | 8.88 | −2.44 | 0.51 | 0.55 | 21.56 |
Regions | Datasets | POD | FAR | ACC |
---|---|---|---|---|
Below 1500 m | IMERG-UC | 0.66 | 0.49 | 0.76 |
IMERG-C | 0.69 | 0.48 | 0.77 | |
GSMaP-MVK | 0.60 | 0.52 | 0.75 | |
GSMaP-Gauge | 0.73 | 0.50 | 0.77 | |
Between 1500 and 2500 m | IMERG-UC | 0.59 | 0.42 | 0.74 |
IMERG-C | 0.61 | 0.41 | 0.75 | |
GSMaP-MVK | 0.54 | 0.47 | 0.71 | |
GSMaP-Gauge | 0.71 | 0.41 | 0.76 | |
Above 2500 m | IMERG-UC | 0.49 | 0.55 | 0.73 |
IMERG-C | 0.54 | 0.54 | 0.72 | |
GSMaP-MVK | 0.37 | 0.62 | 0.72 | |
GSMaP-Gauge | 0.66 | 0.57 | 0.70 | |
Whole country | IMERG-UC | 0.62 | 0.48 | 0.75 |
IMERG-C | 0.64 | 0.47 | 0.76 | |
GSMaP-MVK | 0.57 | 0.52 | 0.74 | |
GSMaP-Gauge | 0.72 | 0.48 | 0.76 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Chen, Y.; Zhou, X.; Yang, K.; Li, X.; Niu, X.; Hu, X.; Khadka, N. Evaluation of GPM-Era Satellite Precipitation Products on the Southern Slopes of the Central Himalayas Against Rain Gauge Data. Remote Sens. 2020, 12, 1836. https://doi.org/10.3390/rs12111836
Sharma S, Chen Y, Zhou X, Yang K, Li X, Niu X, Hu X, Khadka N. Evaluation of GPM-Era Satellite Precipitation Products on the Southern Slopes of the Central Himalayas Against Rain Gauge Data. Remote Sensing. 2020; 12(11):1836. https://doi.org/10.3390/rs12111836
Chicago/Turabian StyleSharma, Shankar, Yingying Chen, Xu Zhou, Kun Yang, Xin Li, Xiaolei Niu, Xin Hu, and Nitesh Khadka. 2020. "Evaluation of GPM-Era Satellite Precipitation Products on the Southern Slopes of the Central Himalayas Against Rain Gauge Data" Remote Sensing 12, no. 11: 1836. https://doi.org/10.3390/rs12111836