Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network
Abstract
:1. Introduction
2. Data Sets
2.1. ASCAT Data
- (1)
- Triplet of NRCS (, , and , denoting fore-beam, mid-beam and aft-beam, respectively);
- (2)
- Triplet of incidence angles, (, , and , ranging of 25–53° and 34–64° for middle beam and side beams, respectively);
- (3)
- Triplet of radar backscattering variability factor () defined as
- (4)
- Ocean wind vectors, including 10-m wind speed () and triplet of cosine values of wind direction relative to the radar beams ( and ).
2.2. Numerical Wave Model Hindcast
2.3. ASCAT-WW3 Matchups: Training, Validation and Test Data
- (1)
- Data flagged as suspicious wind retrievals in ASCAT Level-2 products, with rejection percentage of 12.7% approximately.
- (2)
- Apart from the wind and sea state, oceanic rainfall also affects the C-band radar backscattering (e.g., for scatterometers [30] and SARs [31]). Thus, we used Integrated Multi satellite Retrievals for Global Precipitation Measurement (Imerg) [32] late product (version 6) with global grid of 0.1° and 0.5 h to reject rainy conditions (rain rate > 0 mm/h). Rate of rejection according to this quality control is around 9.4%.
2.4. ASCAT-Buoy Co-Locations
3. Data Analysis Based on ASCAT/Buoy Co-Locations
3.1. Wind–Wave Relationship
3.2. ASCAT Wind Speed Accuracy and Sea State Impact
3.3. Influence of Sea State on ASCAT NRCS
4. Development of Deep Learning Model
4.1. Establishment of Deep Learning Network
- (1)
- The optimizer to train neural network. Nesterov Adaptive Moment Estimation (Nadam) [45,46] with a batch size of 512 has been selected among several other existing optimizers (i.e., stochastic gradient descent [47] or Adam [48]). This is because the loss function minimizing process converges much faster when using Nadam after a series of experiments for our model. We follow the recommendation of Nadam parameters [46]: , .
- (2)
- A learning rate schedule, called “ReduceLRonPlateau”, is employed. This simple trick decreases the learning rate by a factor of 10 once performance regarding validation dataset has stopped improving. Consequently, the model could efficiently benefit from this reducing strategy once learning stagnates.
- (3)
- For denser and deeper networks, the model complexity often makes the training process continue for too long, and this results in an overfitted model which fails to generalize. In our experiment, we invoke a “early stopping” trick, which monitors loss function on validation dataset and quits training when there is no further improving for 10 continuous epochs.
4.2. Feature Selection for Deep Learning Network
- (1)
- Performance is improving due to diversity of antenna.
- (2)
- Adding works for performance improvement.
4.3. Primary Comparison against Baseline
5. Performance Verification
5.1. Comparison against WW3
5.2. Buoy Comparison
- (1)
- Modelling predictions versus in situ observations. Although IOWAGA WW3 has been proved to be a reliable database [28], predictions are actually numerical instead of in situ and may result in discrepancies. For instance, on the basis of our dataset, RMSE of 0.32 m is found for WW3 against buoy SWH.
- (2)
- WW3 outputs are distributed almost globally (Figure 1), but the geographic coverage of NDBC buoys is regional (Figure 2). Particularly, the average observed SWH is 2.07 m from buoys while WW3 SWH hindcasts have a mean value of 2.52 m in this study. This means that buoy observations are skewed toward low sea states, where our proposed model are unfavorable. (See the regionality analysis in Section 6.2.)
- (3)
- Besides, the point observations from buoy could not be regarded as “truth” data free of error, especially within the 50 km radar footprint. Thus, the representativeness error of buoy measurements may be also responsible due to the sampling artefacts, as documented in triple collocation analysis (e.g., [52,53]).
6. Discussion
6.1. Wave Maturity Influence
6.2. Regionality Analysis
6.3. Incidence Angle Influence
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Queffeulou, P. Long-term validation of wave height measurements from altimeters. Mar. Geod. 2004, 27, 495–510. [Google Scholar] [CrossRef]
- Durrant, T.H.; Greenslade, D.J.M.; Simmonds, I. Validation of Jason-1 and Envisat remotely sensed wave heights. J. Atmos. Ocean. Technol. 2009, 26, 123–134. [Google Scholar] [CrossRef]
- Chapron, B.; Johnsen, H.; Garello, R. Wave and wind retrieval from SAR images of the ocean. Ann. Telecommun. 2001, 56, 682–699. [Google Scholar]
- Schulz-Stellenfleth, J.; Konig, T.; Lehner, S. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. J. Geophys. Res. 2007, 112, 1–14. [Google Scholar] [CrossRef]
- Li, X.M.; Lehner, S.; Bruns, T. Ocean wave integral parameter measurements using Envisat ASAR wave mode data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Stopa, J.E.; Mouche, A.A. Significant wave heights from Sentinel-1 SAR: Validation and applications. J. Geophys. Res. 2017, 122, 1827–1848. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, J.; Yang, J.S.; Ren, L.; Zhu, J.H.; Yuan, X.Z.; Xie, C.H. Empirical algorithm for significant wave height retrieval from wave mode data provided by the Chinese satellite Gaofen-3. Remote Sens. 2018, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Vogelzang, J.; Stoffelen, A. Scatterometer wind vector products for application in meteorology and oceanography. J. Sea Res. 2012, 74, 16–25. [Google Scholar] [CrossRef]
- Karaev, V.; Panfilova, M.; Guo, J. Influence of the type of sea waves on the backscattered radar cross section at medium incidence angles. Izv. Atmos. Ocean Phys. 2016, 52, 904–910. [Google Scholar] [CrossRef]
- Quilfen, Y.; Chapron, B.; Collard, F.; Vandemark, D. Relationship between ERS scatterometer measurement and integrated wind and wave parameters. J. Atmos. Ocean. Technol. 2004, 21, 368–373. [Google Scholar] [CrossRef]
- Stopa, J.E.; Mouche, A.A.; Chapron, B.; Collard, F. Sea state impacts on wind speed retrievals from C-band radars. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 2147–2155. [Google Scholar] [CrossRef]
- Li, H.; Mouche, A.A.; Stopa, J.E. Impact of sea state on wind retrieval from Sentinel-1 wave mode data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 559–566. [Google Scholar] [CrossRef]
- Chen, S.; Qiao, F.; Jiang, W.; Guo, J.; Dai, D. Impact of surface waves on wind stress under low to moderate wind conditions. J. Phys. Oceanogr. 2019, 49, 2017–2028. [Google Scholar] [CrossRef]
- Vincent, C.L.; Thomson, J.; Graber, H.C.; Collins, C.O. Impact of swell on the wind-sea and resulting modulation of stress. Prog. Oceanogr. 2019, 178, 102164. [Google Scholar] [CrossRef]
- Hersbach, H. Comparison of C-band scatterometer CMOD5.N equivalent neutral winds with ECMWF. J. Atmos. Ocean. Technol. 2010, 27, 721–736. [Google Scholar] [CrossRef]
- Stoffelen, A.; Verspeek, J.; Vogelzang, J.; Verhoef, A. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- Guo, J.; He, Y.; Perrie, W.; Shen, H.; Chu, X. A new model to estimate significant wave heights with ERS-1/2 scatterometer data. Chin. J. Oceanol. Limnol. 2009, 27, 112–116. [Google Scholar] [CrossRef]
- Guo, J.; He, Y.; Chu, X.; Cui, L.; Liu, G. Wave parameters retrieved from QuikSCAT data. Can. J. Remote Sens. 2009, 35, 345–351. [Google Scholar] [CrossRef]
- Shao, W.; Zhu, S.; Zhang, X.; Gou, S.; Jiao, C.; Yuan, X.; Zhao, L. Intelligent wind retrieval from Chinese gaofen-3 SAR imagery in quad polarization. J. Atmos. Ocean. Technol. 2019, 36, 2121–2138. [Google Scholar] [CrossRef]
- Li, X.-M.; Qin, T.; Wu, K. Retrieval of sea surface wind speed from spaceborne SAR over the Arctic Marginal Ice Zone with a neural network. Remote Sens. 2020, 12, 3291. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- European Organization for the Exploitation of Meteorological Satellites. ASCAT Product Guide. 2015. Available online: www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_DMT_151558&RevisionSelectionMethod=LatestReleased&Rendition=Web (accessed on 29 October 2020).
- Anderson, C.; Bonekamp, H.; Duff, C.; Figa-Saldana, J.; Wilson, J.J.W. Analysis of ASCAT ocean backscatter measurement noise. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2449–2457. [Google Scholar] [CrossRef]
- Lin, W.M.; Portabella, M.; Stoffelen, A.; Vogelzang, J.; Verhoef, A. ASCAT wind quality under high subcell wind variability conditions. J. Geophys. Res. 2015, 120, 5804–5819. [Google Scholar] [CrossRef] [Green Version]
- Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.-F.; Magne, R.; Roland, A.; van der Westhuysen, A.; Queffeulou, P.; Lefevre, J.-M.; Aouf, L.; et al. Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Rascle, N.; Ardhuin, F. A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Model. 2013, 70, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, S.; Isaksen, L.; Janssen, P.; Wedi, N. Effective spectral resolution of ECMWF atmospheric forecast models. ECMWF News Lett. 2013, 137, 19–22. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2013/17358-effective-spectral-resolution-ecmwf-atmospheric-forecast-models.pdf (accessed on 29 October 2020).
- Lin, W.; Portabella, M.; Stoffelen, A.; Verhoef, A.; Turiel, A. ASCAT wind quality control near rain. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4165–4177. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zheng, Q.; Liu, R.; Wang, D.; Duncan, J.H.; Huang, S.-J. A study of radar backscattering from water surface in response to rainfall. J. Geophys. Res. 2016, 121, 1546–1562. [Google Scholar] [CrossRef]
- Sungmin, O.; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.; Tan, J.; Petersen, W.A. Evaluation of GPM IMERG early, late, and final rainfall estimates using WegenerNet gauge data in Southeastern Austria. Hydrol. Earth Syst. Sci. 2017, 21, 6559–6572. [Google Scholar]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Pierson, W.J.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. 1997, 102, 15781–15796. [Google Scholar] [CrossRef]
- Verspeek, J.; Stoffelen, A.; Portabella, M.; Bonekamp, H.; Anderson, C.; Saldaña, J.F. Validation and calibration of ASCAT using CMOD5.n. IEEE Trans. Geosci. Remote Sens. 2010, 48, 386–395. [Google Scholar] [CrossRef]
- Wang, Z.; Stoffelen, A.; Zou, J.; Lin, W.; Verhoef, A.; Zhang, Y.; He, Y.; Lin, M. Validation of new sea surface wind products from Scatterometers Onboard the HY-2B and MetOp-C satellites. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4387–4394. [Google Scholar] [CrossRef]
- Glazman, R.E. Wind-fetch dependence of Seasat scatterometer measurements. Int. J. Remote Sens. 1987, 8, 1641–1647. [Google Scholar] [CrossRef]
- Glazman, R.E.; Pilorz, S.H. Effects of sea maturity on satellite altimeter measurements. J. Geophys. Res. 1990, 95, 2857–2870. [Google Scholar] [CrossRef]
- Karaev, V.Y.; Kanevsky, M.B.; Balandina, G.N.; Cotton, P.D.; Challenor, P.G.; Gommenginger, C.P.; Srokosz, M.A. On the problem of the near ocean surface wind speed retrieval by radar altimeter: Two-parameter algorithm. Int. J. Remote Sens. 2002, 23, 3263–3283. [Google Scholar] [CrossRef]
- Gourrion, J.; Vandemark, D.; Bailey, S.; Chapron, B.; Gommenginger, G.P.; Challenor, P.G.; Srokosz, M.A. A two-parameter wind speed algorithm for Ku-band altimeters. J. Atmos. Ocean. Technol. 2002, 19, 2030–2048. [Google Scholar] [CrossRef]
- Soisuvarn, S.; Jelenak, Z.; Chang, P.S.; Alsweiss, S.O.; Zhu, Q. CMOD5.H—A high wind geophysical model function for C-Band vertically polarized satellite scatterometer measurements. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3744–3760. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Misra, D. Mish: A self-regularized non-monotonic neural activation function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Dozat, T. Incorporating Nesterov momentum into Adam. In Proceedings of the 4th International Conference on Learning Representations, Workshop Track, San Juan, PR, USA, 2–4 May 2016. [Google Scholar]
- Sutskever, I.; Martens, J.; Dahl, G.E.; Hinton, G.E. On the importance of initialization and momentum in deep learning. Proc. Mach. Learn. Res. 2013, 28, 1139–1147. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://github.com/keras-team/keras (accessed on 29 October 2020).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Wang, H.; Zhu, J.; Lin, M.; Zhang, Y.; Chang, Y. Evaluating Chinese HY-2B HSCAT ocean wind products using buoys and other scatterometers. IEEE Geosci. Remote Sens. Lett. 2020, 17, 923–927. [Google Scholar] [CrossRef]
- Portabella, M.; Stoffelen, A. On scatterometer ocean stress. J. Atmos. Ocean. Technol. 2009, 26, 368–382. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.A.E.M.; Abdalla, S.; Hersbach, H.; Bidlot, J.-R. Error estimation of buoy, satellite, and model wave height data. J. Atmos. Ocean. Technol. 2007, 24, 1665–1677. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-M.; Huang, B. A global sea state dataset from spaceborne synthetic aperture radar wave mode data. Sci. Data 2020, 7. [Google Scholar] [CrossRef]
- Karaev, V.Y.; Meshkov, E.M.; Chu, X. Features of sea-wave classification in problems of remote sensing. Izv. Atmos. Ocean. Phys. 2013, 49, 919–929. [Google Scholar] [CrossRef]
- Chen, G.; Chapron, B.; Ezraty, R.; Vandemark, D. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. J. Atmos. Ocean. Technol. 2002, 19, 1849–1859. [Google Scholar] [CrossRef]
- Verhoef, A.; Vogelzang, J.; Verspeek, J.; Stoffelen, A. Long-term scatterometer wind climate data records. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2186–2194. [Google Scholar] [CrossRef]
- Hutchings, N.; Kilpatrick, T.; Long, D.G. Ultrahigh resolution scatterometer winds near Hawaii. Remote Sens. 2020, 12, 564. [Google Scholar] [CrossRef] [Green Version]
Parameter | Correlation Coefficient |
---|---|
Buoy U10 | −0.24 |
Buoy SWH | 0.12 |
Air temperature at sea surface | −0.21 |
Sea surface temperature | −0.18 |
Air-sea temperature difference | −0.20 |
Air pressure | −0.07 |
Radar Beam Permutations | + + + | + + + + | |
---|---|---|---|
One beam | Fore | 0.7367 | 0.7261 |
Mid | 0.7153 | 0.7030 | |
Aft | 0.7319 | 0.7263 | |
Two beams | Aft+Fore | 0.6168 | 0.6087 |
Mid+Aft | 0.6384 | 0.6335 | |
Mid+Fore | 0.6365 | 0.6305 | |
Three beams | Fore+Mid+Aft | 0.5841 | 0.5746 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yang, J.; Zhu, J.; Ren, L.; Liu, Y.; Li, W.; Chen, C. Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network. Remote Sens. 2021, 13, 195. https://doi.org/10.3390/rs13020195
Wang H, Yang J, Zhu J, Ren L, Liu Y, Li W, Chen C. Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network. Remote Sensing. 2021; 13(2):195. https://doi.org/10.3390/rs13020195
Chicago/Turabian StyleWang, He, Jingsong Yang, Jianhua Zhu, Lin Ren, Yahao Liu, Weiwei Li, and Chuntao Chen. 2021. "Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network" Remote Sensing 13, no. 2: 195. https://doi.org/10.3390/rs13020195