Change Target Extraction Based on Scale-Adaptive Difference Image and Morphology Filter for KOMPSAT-5
Abstract
:1. Introduction
- To improve the change detection performance, a scale-adaptive DI modification method was proposed. This method can be applied regardless of the image complexity or resolution because it performs a scalable transformation of the overall DI. Unlike existing techniques, the proposed algorithm does not require a sliding window or region of interest selection. Hence, it can be processed at a high speed, regardless of the size of the input image.
- The candidate pixel groups were individualized to extract the object of interest from the area where the change occurred, and a morphology-based filtering method was applied. The proposed model can extract a target with high performance and exhibits robust characteristics regardless of noise.
- Change detection and object extraction algorithms were integrated to automatically extract change objects for an arbitrary pair of KOMPSAT-5 images; the model provided the resulting image along with the metadata of the extracted objects, such as location, date, and morphology information.
2. Experimental Setup
2.1. Dataset
2.2. Preprocessing
3. Proposed Change Detection Method and Performance
3.1. Difference Image Generation
3.2. Scale-Adaptive DI Modification Method
4. Proposed Desired Target Extraction Method and Performance
4.1. Feature-Based Polygonization of Changed Pixels Groups
4.2. Morphology-Based Target Extraction Method
4.3. Target Extraction Performance
5. Integrated Performance and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar; Wiley: New York, NY, USA, 1991; Volume 11. [Google Scholar]
- Brown, W.M. Synthetic aperture radar. IEEE Trans. Aerospace Electron. Syst. 1967, AES-3, 217–229. [Google Scholar] [CrossRef]
- Rignot, E.J.; Van Zyl, J.J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906. [Google Scholar] [CrossRef] [Green Version]
- Brunner, D.; Lemoine, G.; Bruzzone, L. Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Tran. Geosci. Remote Sens. 2010, 48, 2403–2420. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Lee, M.J. Rapid Change Detection of Flood Affected Area after Collapse of the Laos Xe-Pian Xe-Namnoy Dam Using Sentinel-1 GRD Data. Remote Sens. 2020, 12, 1978. [Google Scholar] [CrossRef]
- Li, L.; Wang, C.; Zhang, H.; Zhang, B.; Wu, F. Urban building change detection in SAR images using combined differential image and residual U-Net network. Remote Sens. 2019, 11, 1091. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.; Zhang, Y.; Yan, L.; Cai, X. A SAR intensity images change detection method based on fusion difference detector and statistical properties. ISPRS Annal. Photogram. Remote Sens. Spat. Inform. Sci. 2017, 4, 439. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Liu, X.; Dong, J.; Zhong, G.; Jian, M. Change detection in SAR images based on deep semi-NMF and SVD networks. Remote Sens. 2017, 9, 435. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Liu, X.; Shi, J.; Lei, C.; Wang, J. Multiscale superpixel segmentation with deep features for change detection. IEEE Acc. 2019, 7, 36600–36616. [Google Scholar] [CrossRef]
- Gong, M.; Zhou, Z.; Ma, J. Change Detection in Synthetic Aperture Radar Images based on Image Fusion and Fuzzy Clustering. IEEE Trans. Image Proces. 2012, 21, 2141–2151. [Google Scholar] [CrossRef]
- Li, H.; Gong, M.; Wang, C.; Miao, Q. Self-paced stacked denoising autoencoders based on differential evolution for change detection. Appl. Soft Comput. 2018, 71, 698–714. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Z.; Chen, Y.; Liu, S.; Song, Y. Frost filtering algorithm of SAR images with adaptive windowing and adaptive tuning factor. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1097–1101. [Google Scholar] [CrossRef]
- Cozzolino, D.; Verdoliva, L.; Scarpa, G.; Poggi, G. Nonlocal CNN SAR image despeckling. Remote Sens. 2020, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Martinis, S.; Plank, S.; Ludwig, R. An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data. Int. J. Appl. Earth Observat. Geoinform. 2018, 73, 123–135. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Wang, S.; Zhang, H.; Liu, M. SAR image change detection method based on visual attention. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3078–3081. [Google Scholar]
- Inglada, J.; Mercier, G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1432–1445. [Google Scholar] [CrossRef] [Green Version]
- Argenti, F.; Alparone, L. Speckle removal from SAR images in the undecimated wavelet domain. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2363–2374. [Google Scholar] [CrossRef]
- Hou, B.; Wei, Q.; Zheng, Y.; Wang, S. Unsupervised change detection in SAR image based on Gauss-log ratio image fusion and compressed projection. IEEE J. Select. Top. Appl. Earth Observat. Remote Sens. 2014, 7, 3297–3317. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2963–2972. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Y.; Zhang, Q.; Zhang, P.; Li, M.; Lu, Y. Unsupervised change detection on SAR images using triplet Markov field model. IEEE Geosci. Remote Sens. Lett. 2012, 10, 697–701. [Google Scholar] [CrossRef]
- Zhuang, H.; Fan, H.; Deng, K.; Yu, Y. An improved neighborhood-based ratio approach for change detection in SAR images. Eur. J. Remote Sens. 2018, 51, 723–738. [Google Scholar] [CrossRef] [Green Version]
- Colin Koeniguer, E.; Nicolas, J.M. Change Detection Based on the Coefficient of Variation in SAR Time-Series of Urban Areas. Remote Sens. 2020, 12, 2089. [Google Scholar] [CrossRef]
- Geng, J.; Ma, X.; Zhou, X.; Wang, H. Saliency-guided deep neural networks for SAR image change detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7365–7377. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Building change detection in VHR SAR images via unsupervised deep transcoding. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1917–1929. [Google Scholar] [CrossRef]
- Shu, Y.; Li, W.; Yang, M.; Cheng, P.; Han, S. Patch-Based Change Detection Method for SAR Images with Label Updating Strategy. Remote Sens. 2021, 13, 1236. [Google Scholar] [CrossRef]
- Dudgeon, D.E.; Lacoss, R.T. An overview of automatic target recognition. Linc. Lab. J. 1993, 6, 3–10. [Google Scholar]
- Bhanu, B.; Dudgeon, D.E.; Zelnio, E.G.; Rosenfeld, A.; Casasent, D.; Reed, I.S. Guest editorial introduction to the special issue on automatic target detection and recognition. IEEE Trans. Image Proces. 1997, 6, 1–6. [Google Scholar] [CrossRef]
- El-Darymli, K.; McGuire, P.; Power, D.; Moloney, C.R. Target detection in synthetic aperture radar imagery: A state-of-the-art survey. J. Appl. Remote Sens. 2013, 7, 071598. [Google Scholar] [CrossRef] [Green Version]
- Schwegmann, C.P.; Kleynhans, W.; Salmon, B.P.; Mdakane, L. A CA-CFAR and localized wavelet ship detector for sentinel-1 imagery. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3707–3710. [Google Scholar]
- Trunk, G.V. Range resolution of targets using automatic detectors. IEEE Trans. Aerosp. Electron. Syst. 1978, 5, 750–755. [Google Scholar] [CrossRef]
- Gao, G.; Liu, L.; Zhao, L.; Shi, G.; Kuang, G. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2008, 47, 1685–1697. [Google Scholar] [CrossRef]
- Fei, G.; Aidong, L.; Kai, L.; Erfu, Y.; Hussain, A. A novel visual attention method for target detection from SAR images. Chin. J. Aeronaut. 2019, 32, 1946–1958. [Google Scholar]
- Xie, L.; Wei, L. Research on Vehicle Detection in High Resolution Satellite Images. In Proceedings of the 2013 Fourth Global Congress on Intelligent Systems, Hong Kong, China, 3–4 December 2013; pp. 279–283. [Google Scholar] [CrossRef]
- Liao, M.; Wang, C.; Wang, Y.; Jiang, L. Using SAR Images to Detect Ships From Sea Clutter. IEEE Geosci. Remote Sens. Lett. 2008, 5, 194–198. [Google Scholar] [CrossRef]
- KARI. Korea Multi-Purpose Satellite. 2020. Available online: https://www.kari.re.kr/eng/sub03_02_01.do (accessed on 3 December 2021).
- Yang, D.; Jeong, H. Verification of Kompsat-5 Sigma Naught Equation. Kor. J. Remote Sens. 2018, 34, 1457–1468. [Google Scholar]
- Scheiber, R.; Moreira, A. Coregistration of interferometric SAR images using spectral diversity. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2179–2191. [Google Scholar] [CrossRef]
- Le Moigne, J. Introduction to remote sensing image registration. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2565–2568. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Yang, G.; Tang, G. A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Proces. 1979, 27, 13–18. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 1995; Volume 351.
- GoogleEarth. GoogleEaaarth 7.3.4. 2021. Available online: http://www.google.com/earth/index.html (accessed on 3 December 2021).
Specification | Value |
---|---|
Incidence Angles | 20–45 deg (normal) |
Orbit | 28 days repeat |
Polarization | Single (HH/HV/VH/VV) |
Looking Mode | Right(default)/Left |
Image Mode/Resolution (m) | Spotlight(HR) : 1/Strip(ST) : 3/ScanSAR(WS) : 20 |
Used mode: Enhanced HR (EH) | Resolution 1 × 1 (m) Swath 5 (km) |
Category | Shape Index | Area (m2) |
---|---|---|
Type 1 | 1.4 < < 2.2 | 18 < < 40 |
Type 2 | 1.5 < < 2.9 | 40 < < 80 |
Type 3 | 1.8 < < 3 | 80 < < 100 |
Set | Number of Candidates of Target Moving Objects | Ground Truth | |||
---|---|---|---|---|---|
Initial Status | Cut-Off by Area | Apply SI Criteria | Apply Length Criteria | ||
1 | 7665 | 152 | 111 | 40 | 37 |
2 | 6827 | 60 | 49 | 18 | 15 |
3 | 9794 | 120 | 93 | 35 | 31 |
4 | 11,023 | 90 | 72 | 33 | 33 |
5 | 6553 | 76 | 55 | 31 | 29 |
6 | 10,834 | 102 | 65 | 31 | 25 |
7 | 3524 | 75 | 60 | 29 | 26 |
8 | 13,996 | 149 | 107 | 37 | 37 |
9 | 13,714 | 85 | 68 | 28 | 26 |
10 | 95,733 | 352 | 203 | 63 | 56 |
Set | Precision | Recall | F1 Score |
---|---|---|---|
1 | 0.88 | 0.97 | 0.92 |
2 | 0.94 | 0.94 | 0.94 |
3 | 0.91 | 0.97 | 0.94 |
4 | 0.82 | 0.96 | 0.89 |
5 | 0.74 | 0.92 | 0.82 |
6 | 0.81 | 0.81 | 0.81 |
7 | 0.79 | 0.96 | 0.87 |
8 | 0.78 | 0.91 | 0.84 |
9 | 0.93 | 0.84 | 0.88 |
10 | 0.84 | 0.80 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Yang, D.; Han, S.; Han, J. Change Target Extraction Based on Scale-Adaptive Difference Image and Morphology Filter for KOMPSAT-5. Remote Sens. 2022, 14, 245. https://doi.org/10.3390/rs14020245
Choi Y, Yang D, Han S, Han J. Change Target Extraction Based on Scale-Adaptive Difference Image and Morphology Filter for KOMPSAT-5. Remote Sensing. 2022; 14(2):245. https://doi.org/10.3390/rs14020245
Chicago/Turabian StyleChoi, Yeonju, Dochul Yang, Sanghyuck Han, and Jaeung Han. 2022. "Change Target Extraction Based on Scale-Adaptive Difference Image and Morphology Filter for KOMPSAT-5" Remote Sensing 14, no. 2: 245. https://doi.org/10.3390/rs14020245